Transfer Learning Algorithm With Knowledge Division Level

One of the major challenges of transfer learning algorithms is the domain drifting problem where the knowledge of source scene is inappropriate for the task of target scene. To solve this problem, a transfer learning algorithm with knowledge division level (KDTL) is proposed to subdivide knowledge o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-11, Vol.34 (11), p.8602-8616
Hauptverfasser: Han, Honggui, Liu, Hongxu, Yang, Cuili, Qiao, Junfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8616
container_issue 11
container_start_page 8602
container_title IEEE transaction on neural networks and learning systems
container_volume 34
creator Han, Honggui
Liu, Hongxu
Yang, Cuili
Qiao, Junfei
description One of the major challenges of transfer learning algorithms is the domain drifting problem where the knowledge of source scene is inappropriate for the task of target scene. To solve this problem, a transfer learning algorithm with knowledge division level (KDTL) is proposed to subdivide knowledge of source scene and leverage them with different drifting degrees. The main properties of KDTL are three folds. First, a comparative evaluation mechanism is developed to detect and subdivide the knowledge into three kinds-the ineffective knowledge, the usable knowledge, and the efficient knowledge. Then, the ineffective and usable knowledge can be found to avoid the negative transfer problem. Second, an integrated framework is designed to prune the ineffective knowledge in the elastic layer, reconstruct the usable knowledge in the refined layer, and learn the efficient knowledge in the leveraged layer. Then, the efficient knowledge can be acquired to improve the learning performance. Third, the theoretical analysis of the proposed KDTL is analyzed in different phases. Then, the convergence property, error bound, and computational complexity of KDTL are provided for the successful applications. Finally, the proposed KDTL is tested by several benchmark problems and some real problems. The experimental results demonstrate that this proposed KDTL can achieve significant improvement over some state-of-the-art algorithms.
doi_str_mv 10.1109/TNNLS.2022.3151646
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35230958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9723467</ieee_id><sourcerecordid>2882571168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9fe15f8b620e0efb9f269a5974d0a0bdf3791415e4be46be8f1d689cbbe1bec93</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoVmpfQEEG3LiZmsskkyxLvWKpCyu6C5OZkzplLjXpVHx7U1u7MIuTwPnOz8mH0BnBQ0Kwup5Np5OXIcWUDhnhRCTiAJ1QImhMmZSH-3f63kMD7xc4HIG5SNQx6jFOGVZcniA1c1njLbhoAplrymYejap568rVRx29hRo9Ne1XBcUcoptyXfqybQK6huoUHdms8jDY3X30enc7Gz_Ek-f7x_FoEueMk1WsLBBupREUAwZrlKVCZVylSYEzbArLUkUSwiExkAgD0pJCSJUbA8RArlgfXW1zl6797MCvdF36HKoqa6DtvKYi_CaRLE0DevkPXbSda8J2mkpJeUqIkIGiWyp3rfcOrF66ss7ctyZYb9zqX7d641bv3Iahi110Z2oo9iN_JgNwvgVKANi3VUpZIlL2Ax63fJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882571168</pqid></control><display><type>article</type><title>Transfer Learning Algorithm With Knowledge Division Level</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Honggui ; Liu, Hongxu ; Yang, Cuili ; Qiao, Junfei</creator><creatorcontrib>Han, Honggui ; Liu, Hongxu ; Yang, Cuili ; Qiao, Junfei</creatorcontrib><description>One of the major challenges of transfer learning algorithms is the domain drifting problem where the knowledge of source scene is inappropriate for the task of target scene. To solve this problem, a transfer learning algorithm with knowledge division level (KDTL) is proposed to subdivide knowledge of source scene and leverage them with different drifting degrees. The main properties of KDTL are three folds. First, a comparative evaluation mechanism is developed to detect and subdivide the knowledge into three kinds-the ineffective knowledge, the usable knowledge, and the efficient knowledge. Then, the ineffective and usable knowledge can be found to avoid the negative transfer problem. Second, an integrated framework is designed to prune the ineffective knowledge in the elastic layer, reconstruct the usable knowledge in the refined layer, and learn the efficient knowledge in the leveraged layer. Then, the efficient knowledge can be acquired to improve the learning performance. Third, the theoretical analysis of the proposed KDTL is analyzed in different phases. Then, the convergence property, error bound, and computational complexity of KDTL are provided for the successful applications. Finally, the proposed KDTL is tested by several benchmark problems and some real problems. The experimental results demonstrate that this proposed KDTL can achieve significant improvement over some state-of-the-art algorithms.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3151646</identifier><identifier>PMID: 35230958</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Domain drifting problem ; Elastic layers ; hierarchal transfer learning algorithm ; integrated learning method ; Knowledge ; Knowledge acquisition ; Knowledge engineering ; Knowledge management ; Learning systems ; Machine learning ; Measurement ; negative transfer ; Prediction algorithms ; Predictive models ; Task analysis ; Theoretical analysis ; Transfer learning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-11, Vol.34 (11), p.8602-8616</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9fe15f8b620e0efb9f269a5974d0a0bdf3791415e4be46be8f1d689cbbe1bec93</citedby><cites>FETCH-LOGICAL-c351t-9fe15f8b620e0efb9f269a5974d0a0bdf3791415e4be46be8f1d689cbbe1bec93</cites><orcidid>0000-0002-3524-8968 ; 0000-0002-5624-3218 ; 0000-0001-5617-4075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9723467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9723467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35230958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Honggui</creatorcontrib><creatorcontrib>Liu, Hongxu</creatorcontrib><creatorcontrib>Yang, Cuili</creatorcontrib><creatorcontrib>Qiao, Junfei</creatorcontrib><title>Transfer Learning Algorithm With Knowledge Division Level</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>One of the major challenges of transfer learning algorithms is the domain drifting problem where the knowledge of source scene is inappropriate for the task of target scene. To solve this problem, a transfer learning algorithm with knowledge division level (KDTL) is proposed to subdivide knowledge of source scene and leverage them with different drifting degrees. The main properties of KDTL are three folds. First, a comparative evaluation mechanism is developed to detect and subdivide the knowledge into three kinds-the ineffective knowledge, the usable knowledge, and the efficient knowledge. Then, the ineffective and usable knowledge can be found to avoid the negative transfer problem. Second, an integrated framework is designed to prune the ineffective knowledge in the elastic layer, reconstruct the usable knowledge in the refined layer, and learn the efficient knowledge in the leveraged layer. Then, the efficient knowledge can be acquired to improve the learning performance. Third, the theoretical analysis of the proposed KDTL is analyzed in different phases. Then, the convergence property, error bound, and computational complexity of KDTL are provided for the successful applications. Finally, the proposed KDTL is tested by several benchmark problems and some real problems. The experimental results demonstrate that this proposed KDTL can achieve significant improvement over some state-of-the-art algorithms.</description><subject>Algorithms</subject><subject>Domain drifting problem</subject><subject>Elastic layers</subject><subject>hierarchal transfer learning algorithm</subject><subject>integrated learning method</subject><subject>Knowledge</subject><subject>Knowledge acquisition</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>negative transfer</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Task analysis</subject><subject>Theoretical analysis</subject><subject>Transfer learning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKAzEUhoMoVmpfQEEG3LiZmsskkyxLvWKpCyu6C5OZkzplLjXpVHx7U1u7MIuTwPnOz8mH0BnBQ0Kwup5Np5OXIcWUDhnhRCTiAJ1QImhMmZSH-3f63kMD7xc4HIG5SNQx6jFOGVZcniA1c1njLbhoAplrymYejap568rVRx29hRo9Ne1XBcUcoptyXfqybQK6huoUHdms8jDY3X30enc7Gz_Ek-f7x_FoEueMk1WsLBBupREUAwZrlKVCZVylSYEzbArLUkUSwiExkAgD0pJCSJUbA8RArlgfXW1zl6797MCvdF36HKoqa6DtvKYi_CaRLE0DevkPXbSda8J2mkpJeUqIkIGiWyp3rfcOrF66ss7ctyZYb9zqX7d641bv3Iahi110Z2oo9iN_JgNwvgVKANi3VUpZIlL2Ax63fJA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Han, Honggui</creator><creator>Liu, Hongxu</creator><creator>Yang, Cuili</creator><creator>Qiao, Junfei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3524-8968</orcidid><orcidid>https://orcid.org/0000-0002-5624-3218</orcidid><orcidid>https://orcid.org/0000-0001-5617-4075</orcidid></search><sort><creationdate>20231101</creationdate><title>Transfer Learning Algorithm With Knowledge Division Level</title><author>Han, Honggui ; Liu, Hongxu ; Yang, Cuili ; Qiao, Junfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9fe15f8b620e0efb9f269a5974d0a0bdf3791415e4be46be8f1d689cbbe1bec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Domain drifting problem</topic><topic>Elastic layers</topic><topic>hierarchal transfer learning algorithm</topic><topic>integrated learning method</topic><topic>Knowledge</topic><topic>Knowledge acquisition</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>negative transfer</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Task analysis</topic><topic>Theoretical analysis</topic><topic>Transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Honggui</creatorcontrib><creatorcontrib>Liu, Hongxu</creatorcontrib><creatorcontrib>Yang, Cuili</creatorcontrib><creatorcontrib>Qiao, Junfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Honggui</au><au>Liu, Hongxu</au><au>Yang, Cuili</au><au>Qiao, Junfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning Algorithm With Knowledge Division Level</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>34</volume><issue>11</issue><spage>8602</spage><epage>8616</epage><pages>8602-8616</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>One of the major challenges of transfer learning algorithms is the domain drifting problem where the knowledge of source scene is inappropriate for the task of target scene. To solve this problem, a transfer learning algorithm with knowledge division level (KDTL) is proposed to subdivide knowledge of source scene and leverage them with different drifting degrees. The main properties of KDTL are three folds. First, a comparative evaluation mechanism is developed to detect and subdivide the knowledge into three kinds-the ineffective knowledge, the usable knowledge, and the efficient knowledge. Then, the ineffective and usable knowledge can be found to avoid the negative transfer problem. Second, an integrated framework is designed to prune the ineffective knowledge in the elastic layer, reconstruct the usable knowledge in the refined layer, and learn the efficient knowledge in the leveraged layer. Then, the efficient knowledge can be acquired to improve the learning performance. Third, the theoretical analysis of the proposed KDTL is analyzed in different phases. Then, the convergence property, error bound, and computational complexity of KDTL are provided for the successful applications. Finally, the proposed KDTL is tested by several benchmark problems and some real problems. The experimental results demonstrate that this proposed KDTL can achieve significant improvement over some state-of-the-art algorithms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35230958</pmid><doi>10.1109/TNNLS.2022.3151646</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3524-8968</orcidid><orcidid>https://orcid.org/0000-0002-5624-3218</orcidid><orcidid>https://orcid.org/0000-0001-5617-4075</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-11, Vol.34 (11), p.8602-8616
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_35230958
source IEEE Electronic Library (IEL)
subjects Algorithms
Domain drifting problem
Elastic layers
hierarchal transfer learning algorithm
integrated learning method
Knowledge
Knowledge acquisition
Knowledge engineering
Knowledge management
Learning systems
Machine learning
Measurement
negative transfer
Prediction algorithms
Predictive models
Task analysis
Theoretical analysis
Transfer learning
title Transfer Learning Algorithm With Knowledge Division Level
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20Algorithm%20With%20Knowledge%20Division%20Level&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Han,%20Honggui&rft.date=2023-11-01&rft.volume=34&rft.issue=11&rft.spage=8602&rft.epage=8616&rft.pages=8602-8616&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3151646&rft_dat=%3Cproquest_RIE%3E2882571168%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882571168&rft_id=info:pmid/35230958&rft_ieee_id=9723467&rfr_iscdi=true