LLP-GAN: A GAN-Based Algorithm for Learning From Label Proportions
Learning from label proportions (LLP) is a widespread and important learning paradigm: only the bag-level proportional information of the grouped training instances is available for the classification task, instead of the instance-level labels in the fully supervised scenario. As a result, LLP is a...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-11, Vol.34 (11), p.8377-8388 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8388 |
---|---|
container_issue | 11 |
container_start_page | 8377 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Liu, Jiabin Wang, Bo Hang, Hanyuan Wang, Huadong Qi, Zhiquan Tian, Yingjie Shi, Yong |
description | Learning from label proportions (LLP) is a widespread and important learning paradigm: only the bag-level proportional information of the grouped training instances is available for the classification task, instead of the instance-level labels in the fully supervised scenario. As a result, LLP is a typical weakly supervised learning protocol and commonly exists in privacy protection circumstances due to the sensitivity in label information for real-world applications. In general, it is less laborious and more efficient to collect label proportions as the bag-level supervised information than the instance-level one. However, the hint for learning the discriminative feature representation is also limited as a less informative signal directly associated with the labels is provided, thus deteriorating the performance of the final instance-level classifier. In this article, delving into the label proportions, we bypass this weak supervision by leveraging generative adversarial networks (GANs) to derive an effective algorithm LLP-GAN. Endowed with an end-to-end structure, LLP-GAN performs approximation in the light of an adversarial learning mechanism without imposing restricted assumptions on distribution. Accordingly, the final instance-level classifier can be directly induced upon the discriminator with minor modification. Under mild assumptions, we give the explicit generative representation and prove the global optimality for LLP-GAN. In addition, compared with existing methods, our work empowers LLP solvers with desirable scalability inheriting from deep models. Extensive experiments on benchmark datasets and a real-world application demonstrate the vivid advantages of the proposed approach. |
doi_str_mv | 10.1109/TNNLS.2022.3149926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35188896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9718021</ieee_id><sourcerecordid>2631865509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-9683469e2e9e3ab2498cba2f24a494509fa99be15092a5b49c2f23e3c952d88a3</originalsourceid><addsrcrecordid>eNpdkEFLwzAUx4Mobsx9AQUpePHS2by0WeJtG24KZQ6c4C2k3evsaJuZdAe_vZmbO5jL_8H7_R_hR8g1jQaURvJhOZ-nbwOIAAaMxlICPyNdoBxCYEKcn-bhR4f0ndtE_vEo4bG8JB2WUCGE5F0yTtNFOBvNH4NR4CMca4erYFStjS3bzzoojA1S1LYpm3UwtaYOUp1hFSys2RrblqZxV-Si0JXD_jF75H36tJw8h-nr7GUySsOcxbwNJRc-JQJKZDqDWIo801BArGMZJ5EstJQZUj-BTrJY5n7HkOUygZUQmvXI_eHu1pqvHbpW1aXLsap0g2bnFHBGBU9836N3_9CN2dnG_06BEJAMKaPcU3Cgcmucs1iorS1rbb8VjdResvqVrPaS1VGyL90eT--yGlenyp9SD9wcgBIRT2s5pCICyn4Aa198oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882571316</pqid></control><display><type>article</type><title>LLP-GAN: A GAN-Based Algorithm for Learning From Label Proportions</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jiabin ; Wang, Bo ; Hang, Hanyuan ; Wang, Huadong ; Qi, Zhiquan ; Tian, Yingjie ; Shi, Yong</creator><creatorcontrib>Liu, Jiabin ; Wang, Bo ; Hang, Hanyuan ; Wang, Huadong ; Qi, Zhiquan ; Tian, Yingjie ; Shi, Yong</creatorcontrib><description>Learning from label proportions (LLP) is a widespread and important learning paradigm: only the bag-level proportional information of the grouped training instances is available for the classification task, instead of the instance-level labels in the fully supervised scenario. As a result, LLP is a typical weakly supervised learning protocol and commonly exists in privacy protection circumstances due to the sensitivity in label information for real-world applications. In general, it is less laborious and more efficient to collect label proportions as the bag-level supervised information than the instance-level one. However, the hint for learning the discriminative feature representation is also limited as a less informative signal directly associated with the labels is provided, thus deteriorating the performance of the final instance-level classifier. In this article, delving into the label proportions, we bypass this weak supervision by leveraging generative adversarial networks (GANs) to derive an effective algorithm LLP-GAN. Endowed with an end-to-end structure, LLP-GAN performs approximation in the light of an adversarial learning mechanism without imposing restricted assumptions on distribution. Accordingly, the final instance-level classifier can be directly induced upon the discriminator with minor modification. Under mild assumptions, we give the explicit generative representation and prove the global optimality for LLP-GAN. In addition, compared with existing methods, our work empowers LLP solvers with desirable scalability inheriting from deep models. Extensive experiments on benchmark datasets and a real-world application demonstrate the vivid advantages of the proposed approach.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3149926</identifier><identifier>PMID: 35188896</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Classifiers ; Entropy ; Generative adversarial networks ; Generative adversarial networks (GANs) ; Generators ; Labels ; Learning ; learning from label proportions (LLP) ; Machine learning ; Privacy ; privacy protection ; Representations ; Supervised learning ; Task analysis ; Training ; weakly supervised learning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-11, Vol.34 (11), p.8377-8388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-9683469e2e9e3ab2498cba2f24a494509fa99be15092a5b49c2f23e3c952d88a3</cites><orcidid>0000-0001-9289-9110 ; 0000-0002-4675-0398 ; 0000-0002-8054-8185 ; 0000-0001-7974-1079 ; 0000-0001-6914-8941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9718021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9718021$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35188896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Hang, Hanyuan</creatorcontrib><creatorcontrib>Wang, Huadong</creatorcontrib><creatorcontrib>Qi, Zhiquan</creatorcontrib><creatorcontrib>Tian, Yingjie</creatorcontrib><creatorcontrib>Shi, Yong</creatorcontrib><title>LLP-GAN: A GAN-Based Algorithm for Learning From Label Proportions</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Learning from label proportions (LLP) is a widespread and important learning paradigm: only the bag-level proportional information of the grouped training instances is available for the classification task, instead of the instance-level labels in the fully supervised scenario. As a result, LLP is a typical weakly supervised learning protocol and commonly exists in privacy protection circumstances due to the sensitivity in label information for real-world applications. In general, it is less laborious and more efficient to collect label proportions as the bag-level supervised information than the instance-level one. However, the hint for learning the discriminative feature representation is also limited as a less informative signal directly associated with the labels is provided, thus deteriorating the performance of the final instance-level classifier. In this article, delving into the label proportions, we bypass this weak supervision by leveraging generative adversarial networks (GANs) to derive an effective algorithm LLP-GAN. Endowed with an end-to-end structure, LLP-GAN performs approximation in the light of an adversarial learning mechanism without imposing restricted assumptions on distribution. Accordingly, the final instance-level classifier can be directly induced upon the discriminator with minor modification. Under mild assumptions, we give the explicit generative representation and prove the global optimality for LLP-GAN. In addition, compared with existing methods, our work empowers LLP solvers with desirable scalability inheriting from deep models. Extensive experiments on benchmark datasets and a real-world application demonstrate the vivid advantages of the proposed approach.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Entropy</subject><subject>Generative adversarial networks</subject><subject>Generative adversarial networks (GANs)</subject><subject>Generators</subject><subject>Labels</subject><subject>Learning</subject><subject>learning from label proportions (LLP)</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>privacy protection</subject><subject>Representations</subject><subject>Supervised learning</subject><subject>Task analysis</subject><subject>Training</subject><subject>weakly supervised learning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLwzAUx4Mobsx9AQUpePHS2by0WeJtG24KZQ6c4C2k3evsaJuZdAe_vZmbO5jL_8H7_R_hR8g1jQaURvJhOZ-nbwOIAAaMxlICPyNdoBxCYEKcn-bhR4f0ndtE_vEo4bG8JB2WUCGE5F0yTtNFOBvNH4NR4CMca4erYFStjS3bzzoojA1S1LYpm3UwtaYOUp1hFSys2RrblqZxV-Si0JXD_jF75H36tJw8h-nr7GUySsOcxbwNJRc-JQJKZDqDWIo801BArGMZJ5EstJQZUj-BTrJY5n7HkOUygZUQmvXI_eHu1pqvHbpW1aXLsap0g2bnFHBGBU9836N3_9CN2dnG_06BEJAMKaPcU3Cgcmucs1iorS1rbb8VjdResvqVrPaS1VGyL90eT--yGlenyp9SD9wcgBIRT2s5pCICyn4Aa198oA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Liu, Jiabin</creator><creator>Wang, Bo</creator><creator>Hang, Hanyuan</creator><creator>Wang, Huadong</creator><creator>Qi, Zhiquan</creator><creator>Tian, Yingjie</creator><creator>Shi, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9289-9110</orcidid><orcidid>https://orcid.org/0000-0002-4675-0398</orcidid><orcidid>https://orcid.org/0000-0002-8054-8185</orcidid><orcidid>https://orcid.org/0000-0001-7974-1079</orcidid><orcidid>https://orcid.org/0000-0001-6914-8941</orcidid></search><sort><creationdate>20231101</creationdate><title>LLP-GAN: A GAN-Based Algorithm for Learning From Label Proportions</title><author>Liu, Jiabin ; Wang, Bo ; Hang, Hanyuan ; Wang, Huadong ; Qi, Zhiquan ; Tian, Yingjie ; Shi, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-9683469e2e9e3ab2498cba2f24a494509fa99be15092a5b49c2f23e3c952d88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Entropy</topic><topic>Generative adversarial networks</topic><topic>Generative adversarial networks (GANs)</topic><topic>Generators</topic><topic>Labels</topic><topic>Learning</topic><topic>learning from label proportions (LLP)</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>privacy protection</topic><topic>Representations</topic><topic>Supervised learning</topic><topic>Task analysis</topic><topic>Training</topic><topic>weakly supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Hang, Hanyuan</creatorcontrib><creatorcontrib>Wang, Huadong</creatorcontrib><creatorcontrib>Qi, Zhiquan</creatorcontrib><creatorcontrib>Tian, Yingjie</creatorcontrib><creatorcontrib>Shi, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jiabin</au><au>Wang, Bo</au><au>Hang, Hanyuan</au><au>Wang, Huadong</au><au>Qi, Zhiquan</au><au>Tian, Yingjie</au><au>Shi, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LLP-GAN: A GAN-Based Algorithm for Learning From Label Proportions</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>34</volume><issue>11</issue><spage>8377</spage><epage>8388</epage><pages>8377-8388</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Learning from label proportions (LLP) is a widespread and important learning paradigm: only the bag-level proportional information of the grouped training instances is available for the classification task, instead of the instance-level labels in the fully supervised scenario. As a result, LLP is a typical weakly supervised learning protocol and commonly exists in privacy protection circumstances due to the sensitivity in label information for real-world applications. In general, it is less laborious and more efficient to collect label proportions as the bag-level supervised information than the instance-level one. However, the hint for learning the discriminative feature representation is also limited as a less informative signal directly associated with the labels is provided, thus deteriorating the performance of the final instance-level classifier. In this article, delving into the label proportions, we bypass this weak supervision by leveraging generative adversarial networks (GANs) to derive an effective algorithm LLP-GAN. Endowed with an end-to-end structure, LLP-GAN performs approximation in the light of an adversarial learning mechanism without imposing restricted assumptions on distribution. Accordingly, the final instance-level classifier can be directly induced upon the discriminator with minor modification. Under mild assumptions, we give the explicit generative representation and prove the global optimality for LLP-GAN. In addition, compared with existing methods, our work empowers LLP solvers with desirable scalability inheriting from deep models. Extensive experiments on benchmark datasets and a real-world application demonstrate the vivid advantages of the proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35188896</pmid><doi>10.1109/TNNLS.2022.3149926</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9289-9110</orcidid><orcidid>https://orcid.org/0000-0002-4675-0398</orcidid><orcidid>https://orcid.org/0000-0002-8054-8185</orcidid><orcidid>https://orcid.org/0000-0001-7974-1079</orcidid><orcidid>https://orcid.org/0000-0001-6914-8941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-11, Vol.34 (11), p.8377-8388 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_35188896 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Classifiers Entropy Generative adversarial networks Generative adversarial networks (GANs) Generators Labels Learning learning from label proportions (LLP) Machine learning Privacy privacy protection Representations Supervised learning Task analysis Training weakly supervised learning |
title | LLP-GAN: A GAN-Based Algorithm for Learning From Label Proportions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LLP-GAN:%20A%20GAN-Based%20Algorithm%20for%20Learning%20From%20Label%20Proportions&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liu,%20Jiabin&rft.date=2023-11-01&rft.volume=34&rft.issue=11&rft.spage=8377&rft.epage=8388&rft.pages=8377-8388&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3149926&rft_dat=%3Cproquest_RIE%3E2631865509%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882571316&rft_id=info:pmid/35188896&rft_ieee_id=9718021&rfr_iscdi=true |