Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway
The osteogenic potential of the human dental pulp stromal cells (hDPSCs) was reduced in the state of oxidative stress. Resveratrol (RSV) possesses numerous biological properties, including osteogenic potential, growth-promoting and antioxidant activities. This study investigates the osteogenic poten...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical biology 2022-12, Vol.60 (1), p.501-508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 508 |
---|---|
container_issue | 1 |
container_start_page | 501 |
container_title | Pharmaceutical biology |
container_volume | 60 |
creator | Zhang, Jingying Li, Rui Man, Kenny Yang, Xuebin B. |
description | The osteogenic potential of the human dental pulp stromal cells (hDPSCs) was reduced in the state of oxidative stress. Resveratrol (RSV) possesses numerous biological properties, including osteogenic potential, growth-promoting and antioxidant activities.
This study investigates the osteogenic potential of RSV by activating the Sirt1/Nrf2 pathway on oxidatively stressed hDPSCs and old mice.
The hDPSCs were subjected to reactive oxygen species (ROS) fluorescence staining, cell proliferation assay, ROS activity assay, superoxide dismutase (SOD) enzyme activity, the glutathione (GSH) concentration assay, alkaline phosphatase staining, real-time polymerase chain reaction (RT-PCR) and Sirt1 immunofluorescence labelling to assess the antioxidant stress and osteogenic ability of RSV. Forty female Kunming mice were divided into Old, Old-RSV, Young and Young-RSV groups to assess the repair of calvarial defects of 0.2 mL RSV of 20 mg/kg/d for seven days by injecting intraperitoneally at 4 weeks after surgery using micro-computed tomography, nonlinear optical microscope and immunohistochemical analysis.
RSV abates oxidative stress by alleviating the proliferation, mitigating the ROS activity, increasing the SOD enzyme activity and ameliorating the GSH concentration (RSV IC
50
in hDPSCs is 67.65 ± 9.86). The antioxidative stress and osteogenic capabilities of RSV were confirmed by the up-regulated gene expression of SOD1, xCT, RUNX2 and OCN, as well as Sirt1/Nrf2. The collagen, bone matrix formation and Sirt1 expression, are significantly increased after RSV treatment in mice.
For elderly or patients with oxidative stress physiological states such as hypertension, heart disease, diabetes, etc., RSV may potentially improve bone augmentation surgery in regenerative medicine. |
doi_str_mv | 10.1080/13880209.2022.2037664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35188840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ce6a16a00ee6404eb1db56ad7901dbc9</doaj_id><sourcerecordid>2761422917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-ad101b9daef51529f63e8d6556ff848d5322f6c4898bfcc89b167ad6b9f42663</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEoqXwCCBLbNiktZ3YcTYINBSoVAFSu7du_DPxKBMPtjNl3h6HTCvKgo19df2dY_vqFMVrgs8JFviCVEJgittziinNS9VwXj8pTklT1yUjhD_NdWbKGTopXsS4wRizqmLPi5OKESFEjU-LdDn2MCo3rpGPyfi1GZ1CO5_MmBwMyFvUf_pxs4qoO6Bg4t4ESMEPKPXBT-s-9_S0yH85DcntDYopgxHtHWTKoBsXErn4FixFO0j9HRxeFs8sDNG8Ou5nxe3ny9vV1_L6-5er1cfrUjFOUwmaYNK1GoxlhNHW8soIzRnj1opaaFZRarmqRSs6q5RoO8Ib0LxrbU05r86Kq8VWe9jIXXBbCAfpwck_DR_WEkJyajBSGQ6EA8bG8BrXpiO6Yxx00-JcqTZ7vV-8dlO3NVrl8QQYHpk-PhldL9d-L4XgDLezwbujQfA_JxOT3LqozDDAaPwUJeUVyShhTUbf_oNu_BTGPClJG05qSlsyU2yhVPAxBmMfHkOwnCMi7yMi54jIY0Sy7s3fP3lQ3WciAx8WwI3Why3c-TBomeAw-GDDHJYoq__f8RvT_s0G</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761422917</pqid></control><display><type>article</type><title>Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway</title><source>Taylor & Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Jingying ; Li, Rui ; Man, Kenny ; Yang, Xuebin B.</creator><creatorcontrib>Zhang, Jingying ; Li, Rui ; Man, Kenny ; Yang, Xuebin B.</creatorcontrib><description>The osteogenic potential of the human dental pulp stromal cells (hDPSCs) was reduced in the state of oxidative stress. Resveratrol (RSV) possesses numerous biological properties, including osteogenic potential, growth-promoting and antioxidant activities.
This study investigates the osteogenic potential of RSV by activating the Sirt1/Nrf2 pathway on oxidatively stressed hDPSCs and old mice.
The hDPSCs were subjected to reactive oxygen species (ROS) fluorescence staining, cell proliferation assay, ROS activity assay, superoxide dismutase (SOD) enzyme activity, the glutathione (GSH) concentration assay, alkaline phosphatase staining, real-time polymerase chain reaction (RT-PCR) and Sirt1 immunofluorescence labelling to assess the antioxidant stress and osteogenic ability of RSV. Forty female Kunming mice were divided into Old, Old-RSV, Young and Young-RSV groups to assess the repair of calvarial defects of 0.2 mL RSV of 20 mg/kg/d for seven days by injecting intraperitoneally at 4 weeks after surgery using micro-computed tomography, nonlinear optical microscope and immunohistochemical analysis.
RSV abates oxidative stress by alleviating the proliferation, mitigating the ROS activity, increasing the SOD enzyme activity and ameliorating the GSH concentration (RSV IC
50
in hDPSCs is 67.65 ± 9.86). The antioxidative stress and osteogenic capabilities of RSV were confirmed by the up-regulated gene expression of SOD1, xCT, RUNX2 and OCN, as well as Sirt1/Nrf2. The collagen, bone matrix formation and Sirt1 expression, are significantly increased after RSV treatment in mice.
For elderly or patients with oxidative stress physiological states such as hypertension, heart disease, diabetes, etc., RSV may potentially improve bone augmentation surgery in regenerative medicine.</description><identifier>ISSN: 1388-0209</identifier><identifier>EISSN: 1744-5116</identifier><identifier>DOI: 10.1080/13880209.2022.2037664</identifier><identifier>PMID: 35188840</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Age Factors ; Alkaline phosphatase ; Animals ; Animals, Outbred Strains ; Antioxidants ; Bone growth ; Bone matrix ; Bone surgery ; Cbfa-1 protein ; Cell proliferation ; Cell Proliferation - drug effects ; Cells, Cultured ; Collagen ; Computed tomography ; Dental pulp ; Dental Pulp - cytology ; Dental pulp stromal cell ; Diabetes mellitus ; Enzymatic activity ; Enzymes ; Female ; Gene expression ; Glutathione ; Heart diseases ; Humans ; Immunofluorescence ; Labeling ; Mice ; NF-E2-Related Factor 2 - metabolism ; OCN ; Osteogenesis - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; Polymerase chain reaction ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Regenerative medicine ; Resveratrol ; Resveratrol - pharmacology ; ROS ; RUNX1 ; SIRT1 protein ; Sirtuin 1 - metabolism ; skull defect ; SOD ; Stromal cells ; Stromal Cells - cytology ; Stromal Cells - drug effects ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; xCT</subject><ispartof>Pharmaceutical biology, 2022-12, Vol.60 (1), p.501-508</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-ad101b9daef51529f63e8d6556ff848d5322f6c4898bfcc89b167ad6b9f42663</citedby><cites>FETCH-LOGICAL-c562t-ad101b9daef51529f63e8d6556ff848d5322f6c4898bfcc89b167ad6b9f42663</cites><orcidid>0000-0002-7971-7180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865099/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865099/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,27489,27911,27912,53778,53780,59128,59129</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35188840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jingying</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Man, Kenny</creatorcontrib><creatorcontrib>Yang, Xuebin B.</creatorcontrib><title>Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway</title><title>Pharmaceutical biology</title><addtitle>Pharm Biol</addtitle><description>The osteogenic potential of the human dental pulp stromal cells (hDPSCs) was reduced in the state of oxidative stress. Resveratrol (RSV) possesses numerous biological properties, including osteogenic potential, growth-promoting and antioxidant activities.
This study investigates the osteogenic potential of RSV by activating the Sirt1/Nrf2 pathway on oxidatively stressed hDPSCs and old mice.
The hDPSCs were subjected to reactive oxygen species (ROS) fluorescence staining, cell proliferation assay, ROS activity assay, superoxide dismutase (SOD) enzyme activity, the glutathione (GSH) concentration assay, alkaline phosphatase staining, real-time polymerase chain reaction (RT-PCR) and Sirt1 immunofluorescence labelling to assess the antioxidant stress and osteogenic ability of RSV. Forty female Kunming mice were divided into Old, Old-RSV, Young and Young-RSV groups to assess the repair of calvarial defects of 0.2 mL RSV of 20 mg/kg/d for seven days by injecting intraperitoneally at 4 weeks after surgery using micro-computed tomography, nonlinear optical microscope and immunohistochemical analysis.
RSV abates oxidative stress by alleviating the proliferation, mitigating the ROS activity, increasing the SOD enzyme activity and ameliorating the GSH concentration (RSV IC
50
in hDPSCs is 67.65 ± 9.86). The antioxidative stress and osteogenic capabilities of RSV were confirmed by the up-regulated gene expression of SOD1, xCT, RUNX2 and OCN, as well as Sirt1/Nrf2. The collagen, bone matrix formation and Sirt1 expression, are significantly increased after RSV treatment in mice.
For elderly or patients with oxidative stress physiological states such as hypertension, heart disease, diabetes, etc., RSV may potentially improve bone augmentation surgery in regenerative medicine.</description><subject>Age Factors</subject><subject>Alkaline phosphatase</subject><subject>Animals</subject><subject>Animals, Outbred Strains</subject><subject>Antioxidants</subject><subject>Bone growth</subject><subject>Bone matrix</subject><subject>Bone surgery</subject><subject>Cbfa-1 protein</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Collagen</subject><subject>Computed tomography</subject><subject>Dental pulp</subject><subject>Dental Pulp - cytology</subject><subject>Dental pulp stromal cell</subject><subject>Diabetes mellitus</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Female</subject><subject>Gene expression</subject><subject>Glutathione</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Labeling</subject><subject>Mice</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>OCN</subject><subject>Osteogenesis - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Polymerase chain reaction</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regenerative medicine</subject><subject>Resveratrol</subject><subject>Resveratrol - pharmacology</subject><subject>ROS</subject><subject>RUNX1</subject><subject>SIRT1 protein</subject><subject>Sirtuin 1 - metabolism</subject><subject>skull defect</subject><subject>SOD</subject><subject>Stromal cells</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - drug effects</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>xCT</subject><issn>1388-0209</issn><issn>1744-5116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEoqXwCCBLbNiktZ3YcTYINBSoVAFSu7du_DPxKBMPtjNl3h6HTCvKgo19df2dY_vqFMVrgs8JFviCVEJgittziinNS9VwXj8pTklT1yUjhD_NdWbKGTopXsS4wRizqmLPi5OKESFEjU-LdDn2MCo3rpGPyfi1GZ1CO5_MmBwMyFvUf_pxs4qoO6Bg4t4ESMEPKPXBT-s-9_S0yH85DcntDYopgxHtHWTKoBsXErn4FixFO0j9HRxeFs8sDNG8Ou5nxe3ny9vV1_L6-5er1cfrUjFOUwmaYNK1GoxlhNHW8soIzRnj1opaaFZRarmqRSs6q5RoO8Ib0LxrbU05r86Kq8VWe9jIXXBbCAfpwck_DR_WEkJyajBSGQ6EA8bG8BrXpiO6Yxx00-JcqTZ7vV-8dlO3NVrl8QQYHpk-PhldL9d-L4XgDLezwbujQfA_JxOT3LqozDDAaPwUJeUVyShhTUbf_oNu_BTGPClJG05qSlsyU2yhVPAxBmMfHkOwnCMi7yMi54jIY0Sy7s3fP3lQ3WciAx8WwI3Why3c-TBomeAw-GDDHJYoq__f8RvT_s0G</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zhang, Jingying</creator><creator>Li, Rui</creator><creator>Man, Kenny</creator><creator>Yang, Xuebin B.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7971-7180</orcidid></search><sort><creationdate>202212</creationdate><title>Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway</title><author>Zhang, Jingying ; Li, Rui ; Man, Kenny ; Yang, Xuebin B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-ad101b9daef51529f63e8d6556ff848d5322f6c4898bfcc89b167ad6b9f42663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age Factors</topic><topic>Alkaline phosphatase</topic><topic>Animals</topic><topic>Animals, Outbred Strains</topic><topic>Antioxidants</topic><topic>Bone growth</topic><topic>Bone matrix</topic><topic>Bone surgery</topic><topic>Cbfa-1 protein</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Collagen</topic><topic>Computed tomography</topic><topic>Dental pulp</topic><topic>Dental Pulp - cytology</topic><topic>Dental pulp stromal cell</topic><topic>Diabetes mellitus</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Female</topic><topic>Gene expression</topic><topic>Glutathione</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Labeling</topic><topic>Mice</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>OCN</topic><topic>Osteogenesis - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Polymerase chain reaction</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regenerative medicine</topic><topic>Resveratrol</topic><topic>Resveratrol - pharmacology</topic><topic>ROS</topic><topic>RUNX1</topic><topic>SIRT1 protein</topic><topic>Sirtuin 1 - metabolism</topic><topic>skull defect</topic><topic>SOD</topic><topic>Stromal cells</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - drug effects</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>xCT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingying</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Man, Kenny</creatorcontrib><creatorcontrib>Yang, Xuebin B.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Pharmaceutical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingying</au><au>Li, Rui</au><au>Man, Kenny</au><au>Yang, Xuebin B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway</atitle><jtitle>Pharmaceutical biology</jtitle><addtitle>Pharm Biol</addtitle><date>2022-12</date><risdate>2022</risdate><volume>60</volume><issue>1</issue><spage>501</spage><epage>508</epage><pages>501-508</pages><issn>1388-0209</issn><eissn>1744-5116</eissn><abstract>The osteogenic potential of the human dental pulp stromal cells (hDPSCs) was reduced in the state of oxidative stress. Resveratrol (RSV) possesses numerous biological properties, including osteogenic potential, growth-promoting and antioxidant activities.
This study investigates the osteogenic potential of RSV by activating the Sirt1/Nrf2 pathway on oxidatively stressed hDPSCs and old mice.
The hDPSCs were subjected to reactive oxygen species (ROS) fluorescence staining, cell proliferation assay, ROS activity assay, superoxide dismutase (SOD) enzyme activity, the glutathione (GSH) concentration assay, alkaline phosphatase staining, real-time polymerase chain reaction (RT-PCR) and Sirt1 immunofluorescence labelling to assess the antioxidant stress and osteogenic ability of RSV. Forty female Kunming mice were divided into Old, Old-RSV, Young and Young-RSV groups to assess the repair of calvarial defects of 0.2 mL RSV of 20 mg/kg/d for seven days by injecting intraperitoneally at 4 weeks after surgery using micro-computed tomography, nonlinear optical microscope and immunohistochemical analysis.
RSV abates oxidative stress by alleviating the proliferation, mitigating the ROS activity, increasing the SOD enzyme activity and ameliorating the GSH concentration (RSV IC
50
in hDPSCs is 67.65 ± 9.86). The antioxidative stress and osteogenic capabilities of RSV were confirmed by the up-regulated gene expression of SOD1, xCT, RUNX2 and OCN, as well as Sirt1/Nrf2. The collagen, bone matrix formation and Sirt1 expression, are significantly increased after RSV treatment in mice.
For elderly or patients with oxidative stress physiological states such as hypertension, heart disease, diabetes, etc., RSV may potentially improve bone augmentation surgery in regenerative medicine.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>35188840</pmid><doi>10.1080/13880209.2022.2037664</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7971-7180</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0209 |
ispartof | Pharmaceutical biology, 2022-12, Vol.60 (1), p.501-508 |
issn | 1388-0209 1744-5116 |
language | eng |
recordid | cdi_pubmed_primary_35188840 |
source | Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Age Factors Alkaline phosphatase Animals Animals, Outbred Strains Antioxidants Bone growth Bone matrix Bone surgery Cbfa-1 protein Cell proliferation Cell Proliferation - drug effects Cells, Cultured Collagen Computed tomography Dental pulp Dental Pulp - cytology Dental pulp stromal cell Diabetes mellitus Enzymatic activity Enzymes Female Gene expression Glutathione Heart diseases Humans Immunofluorescence Labeling Mice NF-E2-Related Factor 2 - metabolism OCN Osteogenesis - drug effects Oxidative stress Oxidative Stress - drug effects Polymerase chain reaction Reactive oxygen species Reactive Oxygen Species - metabolism Regenerative medicine Resveratrol Resveratrol - pharmacology ROS RUNX1 SIRT1 protein Sirtuin 1 - metabolism skull defect SOD Stromal cells Stromal Cells - cytology Stromal Cells - drug effects Superoxide dismutase Superoxide Dismutase - metabolism xCT |
title | Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20osteogenic%20potential%20of%20hDPSCs%20by%20resveratrol%20through%20reducing%20oxidative%20stress%20via%20the%20Sirt1/Nrf2%20pathway&rft.jtitle=Pharmaceutical%20biology&rft.au=Zhang,%20Jingying&rft.date=2022-12&rft.volume=60&rft.issue=1&rft.spage=501&rft.epage=508&rft.pages=501-508&rft.issn=1388-0209&rft.eissn=1744-5116&rft_id=info:doi/10.1080/13880209.2022.2037664&rft_dat=%3Cproquest_pubme%3E2761422917%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761422917&rft_id=info:pmid/35188840&rft_doaj_id=oai_doaj_org_article_ce6a16a00ee6404eb1db56ad7901dbc9&rfr_iscdi=true |