Enzymatic defense against radiation damage in mice: Effect of selenium and vitamin E depletion

Radiation effects are mediated in part by the generation of oxygen-derived free radicals and hydrogen peroxide. Membrane polyunsaturated fatty acids are important biological targets of these toxic molecules which cause lipid peroxidation. Radiation damage to DNA is also known to result in base hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 1986-02, Vol.35 (4), p.601-606
Hauptverfasser: Batist, Gerald, Reynaud, Agnes, Katki, Aspandiar G., Travis, Elizabeth L., Shoemaker, Mildred C., Greene, Raymond F., Myers, Charles E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 4
container_start_page 601
container_title Biochemical pharmacology
container_volume 35
creator Batist, Gerald
Reynaud, Agnes
Katki, Aspandiar G.
Travis, Elizabeth L.
Shoemaker, Mildred C.
Greene, Raymond F.
Myers, Charles E.
description Radiation effects are mediated in part by the generation of oxygen-derived free radicals and hydrogen peroxide. Membrane polyunsaturated fatty acids are important biological targets of these toxic molecules which cause lipid peroxidation. Radiation damage to DNA is also known to result in base hydroperoxides, especially thymidine hydroperoxide. Glutathione (GSH) is known to inhibit lipid peroxidation both chemically and through its interaction with the selenium-dependent glutathione peroxidase (GSH-Px). Although cytosolic GSH-Px can metabolize organic lipid peroxides in solution, it cannot metabolize phospholipid peroxides in micelles. This may be due to the interference of phase differences between the aqueous cytosol and the membrane, or the result of steric hinderance. Recent studies have suggested the presence of a membrane-bound GSH-dependent peroxidase system. We examined the cytosolic versus membrane-associated GSH-Px, in various tissues of mice on a selenium and vitamin E deficient diet, and found significant differences among organs in the distribution of enzyme activity in these two subcellular fractions. The effect of single high-dose whole body irradiation did not appear to be related to the activity of these enzymes.
doi_str_mv 10.1016/0006-2952(86)90354-0
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmed_primary_3511917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0006295286903540</els_id><sourcerecordid>0006295286903540</sourcerecordid><originalsourceid>FETCH-LOGICAL-e290t-928baa09cb80af80b27cba478bcef64218dcc54e784f57e10116798ac4c6e1b43</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotVb_gUIOHvSwmuxHNvEgSFk_oOBFr4bZ7KREdtOy2Rbqrzdri6dh5n1mmPcl5JKzO864uGeMiSRVRXojxa1iWZEn7IhMuSyzOBbymEz_kVNyFsL32ErBJ2SSFZwrXk7JV-V_dh0MztAGLfqAFJbgfBhoD42LwsrTBjpYInWeds7gA62sRTPQlaUBW_Ru01HwDd26AboIVfHUusVx9ZycWGgDXhzqjHw-Vx_z12Tx_vI2f1okmCo2JCqVNQBTppYMrGR1Wpoa8lLWBq3IUy4bY4ocS5nbosRon4tSSTC5EcjrPJuRq_3d9abusNHr3nXQ7_TBZ9SvDzoEA63twRsX_rFSZbxQKmKPewzjr1uHvQ7GoTfYuD461s3Kac70GL8ew9RjtloK_Re_ZtkvKql2dw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enzymatic defense against radiation damage in mice: Effect of selenium and vitamin E depletion</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Batist, Gerald ; Reynaud, Agnes ; Katki, Aspandiar G. ; Travis, Elizabeth L. ; Shoemaker, Mildred C. ; Greene, Raymond F. ; Myers, Charles E.</creator><creatorcontrib>Batist, Gerald ; Reynaud, Agnes ; Katki, Aspandiar G. ; Travis, Elizabeth L. ; Shoemaker, Mildred C. ; Greene, Raymond F. ; Myers, Charles E.</creatorcontrib><description>Radiation effects are mediated in part by the generation of oxygen-derived free radicals and hydrogen peroxide. Membrane polyunsaturated fatty acids are important biological targets of these toxic molecules which cause lipid peroxidation. Radiation damage to DNA is also known to result in base hydroperoxides, especially thymidine hydroperoxide. Glutathione (GSH) is known to inhibit lipid peroxidation both chemically and through its interaction with the selenium-dependent glutathione peroxidase (GSH-Px). Although cytosolic GSH-Px can metabolize organic lipid peroxides in solution, it cannot metabolize phospholipid peroxides in micelles. This may be due to the interference of phase differences between the aqueous cytosol and the membrane, or the result of steric hinderance. Recent studies have suggested the presence of a membrane-bound GSH-dependent peroxidase system. We examined the cytosolic versus membrane-associated GSH-Px, in various tissues of mice on a selenium and vitamin E deficient diet, and found significant differences among organs in the distribution of enzyme activity in these two subcellular fractions. The effect of single high-dose whole body irradiation did not appear to be related to the activity of these enzymes.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/0006-2952(86)90354-0</identifier><identifier>PMID: 3511917</identifier><identifier>CODEN: BCPCA6</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Bone Marrow - enzymology ; Bone Marrow - radiation effects ; Catalase - metabolism ; Cytosol - enzymology ; Diet ; Glutathione Peroxidase - physiology ; Glutathione Transferase - metabolism ; Hematopoietic Stem Cells - radiation effects ; Intestinal Mucosa - enzymology ; Intestinal Mucosa - radiation effects ; Jejunum - radiation effects ; Liver - enzymology ; Male ; Medical sciences ; Mice ; Radiation Injuries - enzymology ; Radiation therapy and radiosensitizing agent ; Selenium - deficiency ; Spleen - radiation effects ; Subcellular Fractions - enzymology ; Treatment with physical agents ; Treatment. General aspects ; Tumors ; Vitamin E Deficiency - enzymology ; Whole-Body Irradiation</subject><ispartof>Biochemical pharmacology, 1986-02, Vol.35 (4), p.601-606</ispartof><rights>1986</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0006-2952(86)90354-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7931599$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3511917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Batist, Gerald</creatorcontrib><creatorcontrib>Reynaud, Agnes</creatorcontrib><creatorcontrib>Katki, Aspandiar G.</creatorcontrib><creatorcontrib>Travis, Elizabeth L.</creatorcontrib><creatorcontrib>Shoemaker, Mildred C.</creatorcontrib><creatorcontrib>Greene, Raymond F.</creatorcontrib><creatorcontrib>Myers, Charles E.</creatorcontrib><title>Enzymatic defense against radiation damage in mice: Effect of selenium and vitamin E depletion</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>Radiation effects are mediated in part by the generation of oxygen-derived free radicals and hydrogen peroxide. Membrane polyunsaturated fatty acids are important biological targets of these toxic molecules which cause lipid peroxidation. Radiation damage to DNA is also known to result in base hydroperoxides, especially thymidine hydroperoxide. Glutathione (GSH) is known to inhibit lipid peroxidation both chemically and through its interaction with the selenium-dependent glutathione peroxidase (GSH-Px). Although cytosolic GSH-Px can metabolize organic lipid peroxides in solution, it cannot metabolize phospholipid peroxides in micelles. This may be due to the interference of phase differences between the aqueous cytosol and the membrane, or the result of steric hinderance. Recent studies have suggested the presence of a membrane-bound GSH-dependent peroxidase system. We examined the cytosolic versus membrane-associated GSH-Px, in various tissues of mice on a selenium and vitamin E deficient diet, and found significant differences among organs in the distribution of enzyme activity in these two subcellular fractions. The effect of single high-dose whole body irradiation did not appear to be related to the activity of these enzymes.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bone Marrow - enzymology</subject><subject>Bone Marrow - radiation effects</subject><subject>Catalase - metabolism</subject><subject>Cytosol - enzymology</subject><subject>Diet</subject><subject>Glutathione Peroxidase - physiology</subject><subject>Glutathione Transferase - metabolism</subject><subject>Hematopoietic Stem Cells - radiation effects</subject><subject>Intestinal Mucosa - enzymology</subject><subject>Intestinal Mucosa - radiation effects</subject><subject>Jejunum - radiation effects</subject><subject>Liver - enzymology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Radiation Injuries - enzymology</subject><subject>Radiation therapy and radiosensitizing agent</subject><subject>Selenium - deficiency</subject><subject>Spleen - radiation effects</subject><subject>Subcellular Fractions - enzymology</subject><subject>Treatment with physical agents</subject><subject>Treatment. General aspects</subject><subject>Tumors</subject><subject>Vitamin E Deficiency - enzymology</subject><subject>Whole-Body Irradiation</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMotVb_gUIOHvSwmuxHNvEgSFk_oOBFr4bZ7KREdtOy2Rbqrzdri6dh5n1mmPcl5JKzO864uGeMiSRVRXojxa1iWZEn7IhMuSyzOBbymEz_kVNyFsL32ErBJ2SSFZwrXk7JV-V_dh0MztAGLfqAFJbgfBhoD42LwsrTBjpYInWeds7gA62sRTPQlaUBW_Ru01HwDd26AboIVfHUusVx9ZycWGgDXhzqjHw-Vx_z12Tx_vI2f1okmCo2JCqVNQBTppYMrGR1Wpoa8lLWBq3IUy4bY4ocS5nbosRon4tSSTC5EcjrPJuRq_3d9abusNHr3nXQ7_TBZ9SvDzoEA63twRsX_rFSZbxQKmKPewzjr1uHvQ7GoTfYuD461s3Kac70GL8ew9RjtloK_Re_ZtkvKql2dw</recordid><startdate>19860215</startdate><enddate>19860215</enddate><creator>Batist, Gerald</creator><creator>Reynaud, Agnes</creator><creator>Katki, Aspandiar G.</creator><creator>Travis, Elizabeth L.</creator><creator>Shoemaker, Mildred C.</creator><creator>Greene, Raymond F.</creator><creator>Myers, Charles E.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>19860215</creationdate><title>Enzymatic defense against radiation damage in mice: Effect of selenium and vitamin E depletion</title><author>Batist, Gerald ; Reynaud, Agnes ; Katki, Aspandiar G. ; Travis, Elizabeth L. ; Shoemaker, Mildred C. ; Greene, Raymond F. ; Myers, Charles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e290t-928baa09cb80af80b27cba478bcef64218dcc54e784f57e10116798ac4c6e1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bone Marrow - enzymology</topic><topic>Bone Marrow - radiation effects</topic><topic>Catalase - metabolism</topic><topic>Cytosol - enzymology</topic><topic>Diet</topic><topic>Glutathione Peroxidase - physiology</topic><topic>Glutathione Transferase - metabolism</topic><topic>Hematopoietic Stem Cells - radiation effects</topic><topic>Intestinal Mucosa - enzymology</topic><topic>Intestinal Mucosa - radiation effects</topic><topic>Jejunum - radiation effects</topic><topic>Liver - enzymology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Radiation Injuries - enzymology</topic><topic>Radiation therapy and radiosensitizing agent</topic><topic>Selenium - deficiency</topic><topic>Spleen - radiation effects</topic><topic>Subcellular Fractions - enzymology</topic><topic>Treatment with physical agents</topic><topic>Treatment. General aspects</topic><topic>Tumors</topic><topic>Vitamin E Deficiency - enzymology</topic><topic>Whole-Body Irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batist, Gerald</creatorcontrib><creatorcontrib>Reynaud, Agnes</creatorcontrib><creatorcontrib>Katki, Aspandiar G.</creatorcontrib><creatorcontrib>Travis, Elizabeth L.</creatorcontrib><creatorcontrib>Shoemaker, Mildred C.</creatorcontrib><creatorcontrib>Greene, Raymond F.</creatorcontrib><creatorcontrib>Myers, Charles E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batist, Gerald</au><au>Reynaud, Agnes</au><au>Katki, Aspandiar G.</au><au>Travis, Elizabeth L.</au><au>Shoemaker, Mildred C.</au><au>Greene, Raymond F.</au><au>Myers, Charles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymatic defense against radiation damage in mice: Effect of selenium and vitamin E depletion</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>1986-02-15</date><risdate>1986</risdate><volume>35</volume><issue>4</issue><spage>601</spage><epage>606</epage><pages>601-606</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><coden>BCPCA6</coden><abstract>Radiation effects are mediated in part by the generation of oxygen-derived free radicals and hydrogen peroxide. Membrane polyunsaturated fatty acids are important biological targets of these toxic molecules which cause lipid peroxidation. Radiation damage to DNA is also known to result in base hydroperoxides, especially thymidine hydroperoxide. Glutathione (GSH) is known to inhibit lipid peroxidation both chemically and through its interaction with the selenium-dependent glutathione peroxidase (GSH-Px). Although cytosolic GSH-Px can metabolize organic lipid peroxides in solution, it cannot metabolize phospholipid peroxides in micelles. This may be due to the interference of phase differences between the aqueous cytosol and the membrane, or the result of steric hinderance. Recent studies have suggested the presence of a membrane-bound GSH-dependent peroxidase system. We examined the cytosolic versus membrane-associated GSH-Px, in various tissues of mice on a selenium and vitamin E deficient diet, and found significant differences among organs in the distribution of enzyme activity in these two subcellular fractions. The effect of single high-dose whole body irradiation did not appear to be related to the activity of these enzymes.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>3511917</pmid><doi>10.1016/0006-2952(86)90354-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2952
ispartof Biochemical pharmacology, 1986-02, Vol.35 (4), p.601-606
issn 0006-2952
1873-2968
language eng
recordid cdi_pubmed_primary_3511917
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biological and medical sciences
Bone Marrow - enzymology
Bone Marrow - radiation effects
Catalase - metabolism
Cytosol - enzymology
Diet
Glutathione Peroxidase - physiology
Glutathione Transferase - metabolism
Hematopoietic Stem Cells - radiation effects
Intestinal Mucosa - enzymology
Intestinal Mucosa - radiation effects
Jejunum - radiation effects
Liver - enzymology
Male
Medical sciences
Mice
Radiation Injuries - enzymology
Radiation therapy and radiosensitizing agent
Selenium - deficiency
Spleen - radiation effects
Subcellular Fractions - enzymology
Treatment with physical agents
Treatment. General aspects
Tumors
Vitamin E Deficiency - enzymology
Whole-Body Irradiation
title Enzymatic defense against radiation damage in mice: Effect of selenium and vitamin E depletion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymatic%20defense%20against%20radiation%20damage%20in%20mice:%20Effect%20of%20selenium%20and%20vitamin%20E%20depletion&rft.jtitle=Biochemical%20pharmacology&rft.au=Batist,%20Gerald&rft.date=1986-02-15&rft.volume=35&rft.issue=4&rft.spage=601&rft.epage=606&rft.pages=601-606&rft.issn=0006-2952&rft.eissn=1873-2968&rft.coden=BCPCA6&rft_id=info:doi/10.1016/0006-2952(86)90354-0&rft_dat=%3Celsevier_pubme%3E0006295286903540%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/3511917&rft_els_id=0006295286903540&rfr_iscdi=true