Private Facial Prediagnosis as an Edge Service for Parkinson's DBS Treatment Valuation
Facial phenotyping for medical prediagnosis has recently been successfully exploited as a novel way for the preclinical assessment of a range of rare genetic diseases, where facial biometrics is revealed to have rich links to underlying genetic or medical causes. In this paper, we aim to extend this...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2022-06, Vol.26 (6), p.2703-2713 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2713 |
---|---|
container_issue | 6 |
container_start_page | 2703 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Jiang, Richard Chazot, Paul Pavese, Nicola Crookes, Danny Bouridane, Ahmed Celebi, M. Emre |
description | Facial phenotyping for medical prediagnosis has recently been successfully exploited as a novel way for the preclinical assessment of a range of rare genetic diseases, where facial biometrics is revealed to have rich links to underlying genetic or medical causes. In this paper, we aim to extend this facial prediagnosis technology for a more general disease, Parkinson's Diseases (PD), and proposed an Artificial-Intelligence-of-Things (AIoT) edge-oriented privacy-preserving facial prediagnosis framework to analyze the treatment of Deep Brain Stimulation (DBS) on PD patients. In the proposed framework, a novel edge-based privacy-preserving framework is proposed to implement private deep facial diagnosis as a service over an AIoT-oriented information theoretically secure multi-party communication scheme, while data privacy has been a primary concern toward a wider exploitation of Electronic Health and Medical Records (EHR/EMR) over cloud-based medical services. In our experiments with a collected facial dataset from PD patients, for the first time, we proved that facial patterns could be used to evaluate the facial difference of PD patients undergoing DBS treatment. We further implemented a privacy-preserving information theoretical secure deep facial prediagnosis framework that can achieve the same accuracy as the non-encrypted one, showing the potential of our facial prediagnosis as a trustworthy edge service for grading the severity of PD in patients. |
doi_str_mv | 10.1109/JBHI.2022.3146369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35085096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695231</ieee_id><sourcerecordid>2623884860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ab68f0ebc4389055bee3728259d96a9596f2ea8d63867ea156f2463a8aedc41e3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMotlR_gAgS8KCX1jw2aXK02tpKwYKP6zLdnZXU7W5NdgX_vSmtHgyBTJJvZpKPkDPOBpwze_M4ms4GggkxkDzRUtsD0hVcm74QzBz-xtwmHXIaworFYeKR1cekIxUzilndJW8L776gQTqBzEFJFx5zB-9VHVygEGdFx_k70mf0Xy5DWtSeLsB_uCrU1VWg96Nn-uIRmjVWDX2DsoXG1dUJOSqgDHi6X3vkdTJ-uZv2508Ps7vbeT-TVjR9WGpTMFxmiTSWKbVElENhhLK51WCV1YVAMLmWRg8RuIr7-FcwgHmWcJQ9cr2ru_H1Z4uhSdcuZFiWUGHdhlRoIY1JjGYRvfyHrurWV_F1kYpNmUqGJlJ8R2W-DsFjkW68W4P_TjlLt97Trfd06z3de485F_vK7XKN-V_Gr-UInO8Ah4h_11ZbJSSXPxz4hKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672805478</pqid></control><display><type>article</type><title>Private Facial Prediagnosis as an Edge Service for Parkinson's DBS Treatment Valuation</title><source>IEEE</source><creator>Jiang, Richard ; Chazot, Paul ; Pavese, Nicola ; Crookes, Danny ; Bouridane, Ahmed ; Celebi, M. Emre</creator><creatorcontrib>Jiang, Richard ; Chazot, Paul ; Pavese, Nicola ; Crookes, Danny ; Bouridane, Ahmed ; Celebi, M. Emre</creatorcontrib><description>Facial phenotyping for medical prediagnosis has recently been successfully exploited as a novel way for the preclinical assessment of a range of rare genetic diseases, where facial biometrics is revealed to have rich links to underlying genetic or medical causes. In this paper, we aim to extend this facial prediagnosis technology for a more general disease, Parkinson's Diseases (PD), and proposed an Artificial-Intelligence-of-Things (AIoT) edge-oriented privacy-preserving facial prediagnosis framework to analyze the treatment of Deep Brain Stimulation (DBS) on PD patients. In the proposed framework, a novel edge-based privacy-preserving framework is proposed to implement private deep facial diagnosis as a service over an AIoT-oriented information theoretically secure multi-party communication scheme, while data privacy has been a primary concern toward a wider exploitation of Electronic Health and Medical Records (EHR/EMR) over cloud-based medical services. In our experiments with a collected facial dataset from PD patients, for the first time, we proved that facial patterns could be used to evaluate the facial difference of PD patients undergoing DBS treatment. We further implemented a privacy-preserving information theoretical secure deep facial prediagnosis framework that can achieve the same accuracy as the non-encrypted one, showing the potential of our facial prediagnosis as a trustworthy edge service for grading the severity of PD in patients.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3146369</identifier><identifier>PMID: 35085096</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biometrics ; Cloud computing ; Data privacy ; Deep brain stimulation ; Deep learning ; Diseases ; Edge AIoT ; electronic health and medical records ; Electronic health records ; Exploitation ; facial prediagnosis ; Genetic disorders ; Health services ; Homomorphic encryption ; Intelligence ; medical biometrics ; Medical diagnosis ; Medical diagnostic imaging ; Medical records ; Movement disorders ; Neurodegenerative diseases ; Parkinson's disease ; Patients ; Phenotyping ; Privacy ; private biometrics ; private deep learning ; Satellite broadcasting ; Servers</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-06, Vol.26 (6), p.2703-2713</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ab68f0ebc4389055bee3728259d96a9596f2ea8d63867ea156f2463a8aedc41e3</citedby><cites>FETCH-LOGICAL-c392t-ab68f0ebc4389055bee3728259d96a9596f2ea8d63867ea156f2463a8aedc41e3</cites><orcidid>0000-0002-2721-6317 ; 0000-0002-5453-0379 ; 0000-0002-1474-2772 ; 0000-0003-1721-9474 ; 0000-0002-3533-6095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9695231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35085096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Richard</creatorcontrib><creatorcontrib>Chazot, Paul</creatorcontrib><creatorcontrib>Pavese, Nicola</creatorcontrib><creatorcontrib>Crookes, Danny</creatorcontrib><creatorcontrib>Bouridane, Ahmed</creatorcontrib><creatorcontrib>Celebi, M. Emre</creatorcontrib><title>Private Facial Prediagnosis as an Edge Service for Parkinson's DBS Treatment Valuation</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Facial phenotyping for medical prediagnosis has recently been successfully exploited as a novel way for the preclinical assessment of a range of rare genetic diseases, where facial biometrics is revealed to have rich links to underlying genetic or medical causes. In this paper, we aim to extend this facial prediagnosis technology for a more general disease, Parkinson's Diseases (PD), and proposed an Artificial-Intelligence-of-Things (AIoT) edge-oriented privacy-preserving facial prediagnosis framework to analyze the treatment of Deep Brain Stimulation (DBS) on PD patients. In the proposed framework, a novel edge-based privacy-preserving framework is proposed to implement private deep facial diagnosis as a service over an AIoT-oriented information theoretically secure multi-party communication scheme, while data privacy has been a primary concern toward a wider exploitation of Electronic Health and Medical Records (EHR/EMR) over cloud-based medical services. In our experiments with a collected facial dataset from PD patients, for the first time, we proved that facial patterns could be used to evaluate the facial difference of PD patients undergoing DBS treatment. We further implemented a privacy-preserving information theoretical secure deep facial prediagnosis framework that can achieve the same accuracy as the non-encrypted one, showing the potential of our facial prediagnosis as a trustworthy edge service for grading the severity of PD in patients.</description><subject>Biometrics</subject><subject>Cloud computing</subject><subject>Data privacy</subject><subject>Deep brain stimulation</subject><subject>Deep learning</subject><subject>Diseases</subject><subject>Edge AIoT</subject><subject>electronic health and medical records</subject><subject>Electronic health records</subject><subject>Exploitation</subject><subject>facial prediagnosis</subject><subject>Genetic disorders</subject><subject>Health services</subject><subject>Homomorphic encryption</subject><subject>Intelligence</subject><subject>medical biometrics</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>Medical records</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Phenotyping</subject><subject>Privacy</subject><subject>private biometrics</subject><subject>private deep learning</subject><subject>Satellite broadcasting</subject><subject>Servers</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMotlR_gAgS8KCX1jw2aXK02tpKwYKP6zLdnZXU7W5NdgX_vSmtHgyBTJJvZpKPkDPOBpwze_M4ms4GggkxkDzRUtsD0hVcm74QzBz-xtwmHXIaworFYeKR1cekIxUzilndJW8L776gQTqBzEFJFx5zB-9VHVygEGdFx_k70mf0Xy5DWtSeLsB_uCrU1VWg96Nn-uIRmjVWDX2DsoXG1dUJOSqgDHi6X3vkdTJ-uZv2508Ps7vbeT-TVjR9WGpTMFxmiTSWKbVElENhhLK51WCV1YVAMLmWRg8RuIr7-FcwgHmWcJQ9cr2ru_H1Z4uhSdcuZFiWUGHdhlRoIY1JjGYRvfyHrurWV_F1kYpNmUqGJlJ8R2W-DsFjkW68W4P_TjlLt97Trfd06z3de485F_vK7XKN-V_Gr-UInO8Ah4h_11ZbJSSXPxz4hKc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Jiang, Richard</creator><creator>Chazot, Paul</creator><creator>Pavese, Nicola</creator><creator>Crookes, Danny</creator><creator>Bouridane, Ahmed</creator><creator>Celebi, M. Emre</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2721-6317</orcidid><orcidid>https://orcid.org/0000-0002-5453-0379</orcidid><orcidid>https://orcid.org/0000-0002-1474-2772</orcidid><orcidid>https://orcid.org/0000-0003-1721-9474</orcidid><orcidid>https://orcid.org/0000-0002-3533-6095</orcidid></search><sort><creationdate>20220601</creationdate><title>Private Facial Prediagnosis as an Edge Service for Parkinson's DBS Treatment Valuation</title><author>Jiang, Richard ; Chazot, Paul ; Pavese, Nicola ; Crookes, Danny ; Bouridane, Ahmed ; Celebi, M. Emre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ab68f0ebc4389055bee3728259d96a9596f2ea8d63867ea156f2463a8aedc41e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biometrics</topic><topic>Cloud computing</topic><topic>Data privacy</topic><topic>Deep brain stimulation</topic><topic>Deep learning</topic><topic>Diseases</topic><topic>Edge AIoT</topic><topic>electronic health and medical records</topic><topic>Electronic health records</topic><topic>Exploitation</topic><topic>facial prediagnosis</topic><topic>Genetic disorders</topic><topic>Health services</topic><topic>Homomorphic encryption</topic><topic>Intelligence</topic><topic>medical biometrics</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>Medical records</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Phenotyping</topic><topic>Privacy</topic><topic>private biometrics</topic><topic>private deep learning</topic><topic>Satellite broadcasting</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Richard</creatorcontrib><creatorcontrib>Chazot, Paul</creatorcontrib><creatorcontrib>Pavese, Nicola</creatorcontrib><creatorcontrib>Crookes, Danny</creatorcontrib><creatorcontrib>Bouridane, Ahmed</creatorcontrib><creatorcontrib>Celebi, M. Emre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Richard</au><au>Chazot, Paul</au><au>Pavese, Nicola</au><au>Crookes, Danny</au><au>Bouridane, Ahmed</au><au>Celebi, M. Emre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Private Facial Prediagnosis as an Edge Service for Parkinson's DBS Treatment Valuation</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>6</issue><spage>2703</spage><epage>2713</epage><pages>2703-2713</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Facial phenotyping for medical prediagnosis has recently been successfully exploited as a novel way for the preclinical assessment of a range of rare genetic diseases, where facial biometrics is revealed to have rich links to underlying genetic or medical causes. In this paper, we aim to extend this facial prediagnosis technology for a more general disease, Parkinson's Diseases (PD), and proposed an Artificial-Intelligence-of-Things (AIoT) edge-oriented privacy-preserving facial prediagnosis framework to analyze the treatment of Deep Brain Stimulation (DBS) on PD patients. In the proposed framework, a novel edge-based privacy-preserving framework is proposed to implement private deep facial diagnosis as a service over an AIoT-oriented information theoretically secure multi-party communication scheme, while data privacy has been a primary concern toward a wider exploitation of Electronic Health and Medical Records (EHR/EMR) over cloud-based medical services. In our experiments with a collected facial dataset from PD patients, for the first time, we proved that facial patterns could be used to evaluate the facial difference of PD patients undergoing DBS treatment. We further implemented a privacy-preserving information theoretical secure deep facial prediagnosis framework that can achieve the same accuracy as the non-encrypted one, showing the potential of our facial prediagnosis as a trustworthy edge service for grading the severity of PD in patients.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35085096</pmid><doi>10.1109/JBHI.2022.3146369</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2721-6317</orcidid><orcidid>https://orcid.org/0000-0002-5453-0379</orcidid><orcidid>https://orcid.org/0000-0002-1474-2772</orcidid><orcidid>https://orcid.org/0000-0003-1721-9474</orcidid><orcidid>https://orcid.org/0000-0002-3533-6095</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-06, Vol.26 (6), p.2703-2713 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_35085096 |
source | IEEE |
subjects | Biometrics Cloud computing Data privacy Deep brain stimulation Deep learning Diseases Edge AIoT electronic health and medical records Electronic health records Exploitation facial prediagnosis Genetic disorders Health services Homomorphic encryption Intelligence medical biometrics Medical diagnosis Medical diagnostic imaging Medical records Movement disorders Neurodegenerative diseases Parkinson's disease Patients Phenotyping Privacy private biometrics private deep learning Satellite broadcasting Servers |
title | Private Facial Prediagnosis as an Edge Service for Parkinson's DBS Treatment Valuation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Private%20Facial%20Prediagnosis%20as%20an%20Edge%20Service%20for%20Parkinson's%20DBS%20Treatment%20Valuation&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Jiang,%20Richard&rft.date=2022-06-01&rft.volume=26&rft.issue=6&rft.spage=2703&rft.epage=2713&rft.pages=2703-2713&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3146369&rft_dat=%3Cproquest_RIE%3E2623884860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672805478&rft_id=info:pmid/35085096&rft_ieee_id=9695231&rfr_iscdi=true |