Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model
Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retina...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-01, Vol.45 (1), p.1233-1249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1249 |
---|---|
container_issue | 1 |
container_start_page | 1233 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Zhu, Lin Dong, Siwei Li, Jianing Huang, Tiejun Tian, Yonghong |
description | Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retinal periphery, the spike camera was developed recently to perceive fine textures by simulating a small retinal region called the fovea. For this new type of neuromorphic camera, how to reconstruct ultra-high speed visual images from spike data becomes an important yet challenging issue in visual scene perception, analysis, and recognition applications. In this paper, a bio-inspired visual reconstruction framework for the spike camera is proposed for the first time. Its core idea is to use the biologically inspired adaptive adjustment mechanisms, combined with the spatiotemporal spike information extracted by the proposed model, to reconstruct the full texture of natural scenes in an ultra-high temporal resolution. Specifically, the proposed model consists of a motion local excitation layer, a spike refining layer and a visual reconstruction layer motivated by the bio-realistic leaky integrate-and-fire (LIF) neurons and synapse connection with spike-timing dependent plasticity (STDP) rule. To evaluate the performance, a spike dataset was constructed for normal and high-speed scenes in real-world recorded by the spike camera. The experimental results show that the proposed approach can reconstruct the visual images with 40,000 frames per second in both normal and high-speed scenes, while achieving high dynamic range and high image quality. |
doi_str_mv | 10.1109/TPAMI.2022.3146140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35085071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695196</ieee_id><sourcerecordid>2623880708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-d119c60b034b1e6d051c2580c16cf129a0ed26f050e4fea64a06e7c3682fd7403</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EokvLFwAJReLCJcuM7TjOsVqxtNIWULvt1fI6k-KSxIudVOLbN_unPXCZkd783mg0j7EPCHNEqL6uf51fXc45cD4XKBVKeMVmWIkqF4WoXrMZoOK51lyfsHcpPQCgLEC8ZSeiAF1AiTPW3rZDtPmFv_-dranbhmjb7JpSaMfBhz6782ncKy70aYij26vLGLrMZsvwSDZf-T-U3Wx3dWE7ijZ79HYv-P4--0FjnBxXoab2jL1pbJvo_bGfstvlt_XiIl_9_H65OF_lTgAf8hqxcgo2IOQGSdVQoOOFBofKNcgrC1Rz1UABJBuySlpQVDqhNG_qUoI4ZV8Oe7cx_B0pDabzyVHb2p7CmAxXXGgNJegJ_fwf-hDG2E_XGV7KUiEUEieKHygXQ0qRGrONvrPxn0EwuyzMPguzy8Ics5hMn46rx01H9Yvl-fkT8PEAeCJ6GVeqKrBS4gkIMoyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747610541</pqid></control><display><type>article</type><title>Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Lin ; Dong, Siwei ; Li, Jianing ; Huang, Tiejun ; Tian, Yonghong</creator><creatorcontrib>Zhu, Lin ; Dong, Siwei ; Li, Jianing ; Huang, Tiejun ; Tian, Yonghong</creatorcontrib><description>Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retinal periphery, the spike camera was developed recently to perceive fine textures by simulating a small retinal region called the fovea. For this new type of neuromorphic camera, how to reconstruct ultra-high speed visual images from spike data becomes an important yet challenging issue in visual scene perception, analysis, and recognition applications. In this paper, a bio-inspired visual reconstruction framework for the spike camera is proposed for the first time. Its core idea is to use the biologically inspired adaptive adjustment mechanisms, combined with the spatiotemporal spike information extracted by the proposed model, to reconstruct the full texture of natural scenes in an ultra-high temporal resolution. Specifically, the proposed model consists of a motion local excitation layer, a spike refining layer and a visual reconstruction layer motivated by the bio-realistic leaky integrate-and-fire (LIF) neurons and synapse connection with spike-timing dependent plasticity (STDP) rule. To evaluate the performance, a spike dataset was constructed for normal and high-speed scenes in real-world recorded by the spike camera. The experimental results show that the proposed approach can reconstruct the visual images with 40,000 frames per second in both normal and high-speed scenes, while achieving high dynamic range and high image quality.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3146140</identifier><identifier>PMID: 35085071</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; bio-inspired vision ; Biomimetics ; Cameras ; Fovea ; Frames per second ; High speed ; Image quality ; Image reconstruction ; Image sensors ; Models, Neurological ; Neuromorphic vision sensor ; Neurons ; Retina ; spike camera ; spiking neuron model ; Temporal resolution ; texture reconstruction ; Vision ; Visual Perception - physiology ; Visualization ; Voltage control</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.1233-1249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-d119c60b034b1e6d051c2580c16cf129a0ed26f050e4fea64a06e7c3682fd7403</cites><orcidid>0000-0002-7468-0622 ; 0000-0002-0249-8100 ; 0000-0001-6487-0441 ; 0000-0002-4234-6099 ; 0000-0002-2978-5935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9695196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35085071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Dong, Siwei</creatorcontrib><creatorcontrib>Li, Jianing</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><creatorcontrib>Tian, Yonghong</creatorcontrib><title>Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retinal periphery, the spike camera was developed recently to perceive fine textures by simulating a small retinal region called the fovea. For this new type of neuromorphic camera, how to reconstruct ultra-high speed visual images from spike data becomes an important yet challenging issue in visual scene perception, analysis, and recognition applications. In this paper, a bio-inspired visual reconstruction framework for the spike camera is proposed for the first time. Its core idea is to use the biologically inspired adaptive adjustment mechanisms, combined with the spatiotemporal spike information extracted by the proposed model, to reconstruct the full texture of natural scenes in an ultra-high temporal resolution. Specifically, the proposed model consists of a motion local excitation layer, a spike refining layer and a visual reconstruction layer motivated by the bio-realistic leaky integrate-and-fire (LIF) neurons and synapse connection with spike-timing dependent plasticity (STDP) rule. To evaluate the performance, a spike dataset was constructed for normal and high-speed scenes in real-world recorded by the spike camera. The experimental results show that the proposed approach can reconstruct the visual images with 40,000 frames per second in both normal and high-speed scenes, while achieving high dynamic range and high image quality.</description><subject>Algorithms</subject><subject>bio-inspired vision</subject><subject>Biomimetics</subject><subject>Cameras</subject><subject>Fovea</subject><subject>Frames per second</subject><subject>High speed</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image sensors</subject><subject>Models, Neurological</subject><subject>Neuromorphic vision sensor</subject><subject>Neurons</subject><subject>Retina</subject><subject>spike camera</subject><subject>spiking neuron model</subject><subject>Temporal resolution</subject><subject>texture reconstruction</subject><subject>Vision</subject><subject>Visual Perception - physiology</subject><subject>Visualization</subject><subject>Voltage control</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EokvLFwAJReLCJcuM7TjOsVqxtNIWULvt1fI6k-KSxIudVOLbN_unPXCZkd783mg0j7EPCHNEqL6uf51fXc45cD4XKBVKeMVmWIkqF4WoXrMZoOK51lyfsHcpPQCgLEC8ZSeiAF1AiTPW3rZDtPmFv_-dranbhmjb7JpSaMfBhz6782ncKy70aYij26vLGLrMZsvwSDZf-T-U3Wx3dWE7ijZ79HYv-P4--0FjnBxXoab2jL1pbJvo_bGfstvlt_XiIl_9_H65OF_lTgAf8hqxcgo2IOQGSdVQoOOFBofKNcgrC1Rz1UABJBuySlpQVDqhNG_qUoI4ZV8Oe7cx_B0pDabzyVHb2p7CmAxXXGgNJegJ_fwf-hDG2E_XGV7KUiEUEieKHygXQ0qRGrONvrPxn0EwuyzMPguzy8Ics5hMn46rx01H9Yvl-fkT8PEAeCJ6GVeqKrBS4gkIMoyU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhu, Lin</creator><creator>Dong, Siwei</creator><creator>Li, Jianing</creator><creator>Huang, Tiejun</creator><creator>Tian, Yonghong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7468-0622</orcidid><orcidid>https://orcid.org/0000-0002-0249-8100</orcidid><orcidid>https://orcid.org/0000-0001-6487-0441</orcidid><orcidid>https://orcid.org/0000-0002-4234-6099</orcidid><orcidid>https://orcid.org/0000-0002-2978-5935</orcidid></search><sort><creationdate>20230101</creationdate><title>Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model</title><author>Zhu, Lin ; Dong, Siwei ; Li, Jianing ; Huang, Tiejun ; Tian, Yonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-d119c60b034b1e6d051c2580c16cf129a0ed26f050e4fea64a06e7c3682fd7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>bio-inspired vision</topic><topic>Biomimetics</topic><topic>Cameras</topic><topic>Fovea</topic><topic>Frames per second</topic><topic>High speed</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image sensors</topic><topic>Models, Neurological</topic><topic>Neuromorphic vision sensor</topic><topic>Neurons</topic><topic>Retina</topic><topic>spike camera</topic><topic>spiking neuron model</topic><topic>Temporal resolution</topic><topic>texture reconstruction</topic><topic>Vision</topic><topic>Visual Perception - physiology</topic><topic>Visualization</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Dong, Siwei</creatorcontrib><creatorcontrib>Li, Jianing</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><creatorcontrib>Tian, Yonghong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Lin</au><au>Dong, Siwei</au><au>Li, Jianing</au><au>Huang, Tiejun</au><au>Tian, Yonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><spage>1233</spage><epage>1249</epage><pages>1233-1249</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retinal periphery, the spike camera was developed recently to perceive fine textures by simulating a small retinal region called the fovea. For this new type of neuromorphic camera, how to reconstruct ultra-high speed visual images from spike data becomes an important yet challenging issue in visual scene perception, analysis, and recognition applications. In this paper, a bio-inspired visual reconstruction framework for the spike camera is proposed for the first time. Its core idea is to use the biologically inspired adaptive adjustment mechanisms, combined with the spatiotemporal spike information extracted by the proposed model, to reconstruct the full texture of natural scenes in an ultra-high temporal resolution. Specifically, the proposed model consists of a motion local excitation layer, a spike refining layer and a visual reconstruction layer motivated by the bio-realistic leaky integrate-and-fire (LIF) neurons and synapse connection with spike-timing dependent plasticity (STDP) rule. To evaluate the performance, a spike dataset was constructed for normal and high-speed scenes in real-world recorded by the spike camera. The experimental results show that the proposed approach can reconstruct the visual images with 40,000 frames per second in both normal and high-speed scenes, while achieving high dynamic range and high image quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35085071</pmid><doi>10.1109/TPAMI.2022.3146140</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7468-0622</orcidid><orcidid>https://orcid.org/0000-0002-0249-8100</orcidid><orcidid>https://orcid.org/0000-0001-6487-0441</orcidid><orcidid>https://orcid.org/0000-0002-4234-6099</orcidid><orcidid>https://orcid.org/0000-0002-2978-5935</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.1233-1249 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_35085071 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms bio-inspired vision Biomimetics Cameras Fovea Frames per second High speed Image quality Image reconstruction Image sensors Models, Neurological Neuromorphic vision sensor Neurons Retina spike camera spiking neuron model Temporal resolution texture reconstruction Vision Visual Perception - physiology Visualization Voltage control |
title | Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-High%20Temporal%20Resolution%20Visual%20Reconstruction%20From%20a%20Fovea-Like%20Spike%20Camera%20via%20Spiking%20Neuron%20Model&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhu,%20Lin&rft.date=2023-01-01&rft.volume=45&rft.issue=1&rft.spage=1233&rft.epage=1249&rft.pages=1233-1249&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3146140&rft_dat=%3Cproquest_RIE%3E2623880708%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747610541&rft_id=info:pmid/35085071&rft_ieee_id=9695196&rfr_iscdi=true |