Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model

Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-01, Vol.45 (1), p.1233-1249
Hauptverfasser: Zhu, Lin, Dong, Siwei, Li, Jianing, Huang, Tiejun, Tian, Yonghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1249
container_issue 1
container_start_page 1233
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Zhu, Lin
Dong, Siwei
Li, Jianing
Huang, Tiejun
Tian, Yonghong
description Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retinal periphery, the spike camera was developed recently to perceive fine textures by simulating a small retinal region called the fovea. For this new type of neuromorphic camera, how to reconstruct ultra-high speed visual images from spike data becomes an important yet challenging issue in visual scene perception, analysis, and recognition applications. In this paper, a bio-inspired visual reconstruction framework for the spike camera is proposed for the first time. Its core idea is to use the biologically inspired adaptive adjustment mechanisms, combined with the spatiotemporal spike information extracted by the proposed model, to reconstruct the full texture of natural scenes in an ultra-high temporal resolution. Specifically, the proposed model consists of a motion local excitation layer, a spike refining layer and a visual reconstruction layer motivated by the bio-realistic leaky integrate-and-fire (LIF) neurons and synapse connection with spike-timing dependent plasticity (STDP) rule. To evaluate the performance, a spike dataset was constructed for normal and high-speed scenes in real-world recorded by the spike camera. The experimental results show that the proposed approach can reconstruct the visual images with 40,000 frames per second in both normal and high-speed scenes, while achieving high dynamic range and high image quality.
doi_str_mv 10.1109/TPAMI.2022.3146140
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35085071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9695196</ieee_id><sourcerecordid>2623880708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-d119c60b034b1e6d051c2580c16cf129a0ed26f050e4fea64a06e7c3682fd7403</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EokvLFwAJReLCJcuM7TjOsVqxtNIWULvt1fI6k-KSxIudVOLbN_unPXCZkd783mg0j7EPCHNEqL6uf51fXc45cD4XKBVKeMVmWIkqF4WoXrMZoOK51lyfsHcpPQCgLEC8ZSeiAF1AiTPW3rZDtPmFv_-dranbhmjb7JpSaMfBhz6782ncKy70aYij26vLGLrMZsvwSDZf-T-U3Wx3dWE7ijZ79HYv-P4--0FjnBxXoab2jL1pbJvo_bGfstvlt_XiIl_9_H65OF_lTgAf8hqxcgo2IOQGSdVQoOOFBofKNcgrC1Rz1UABJBuySlpQVDqhNG_qUoI4ZV8Oe7cx_B0pDabzyVHb2p7CmAxXXGgNJegJ_fwf-hDG2E_XGV7KUiEUEieKHygXQ0qRGrONvrPxn0EwuyzMPguzy8Ics5hMn46rx01H9Yvl-fkT8PEAeCJ6GVeqKrBS4gkIMoyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747610541</pqid></control><display><type>article</type><title>Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Lin ; Dong, Siwei ; Li, Jianing ; Huang, Tiejun ; Tian, Yonghong</creator><creatorcontrib>Zhu, Lin ; Dong, Siwei ; Li, Jianing ; Huang, Tiejun ; Tian, Yonghong</creatorcontrib><description>Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retinal periphery, the spike camera was developed recently to perceive fine textures by simulating a small retinal region called the fovea. For this new type of neuromorphic camera, how to reconstruct ultra-high speed visual images from spike data becomes an important yet challenging issue in visual scene perception, analysis, and recognition applications. In this paper, a bio-inspired visual reconstruction framework for the spike camera is proposed for the first time. Its core idea is to use the biologically inspired adaptive adjustment mechanisms, combined with the spatiotemporal spike information extracted by the proposed model, to reconstruct the full texture of natural scenes in an ultra-high temporal resolution. Specifically, the proposed model consists of a motion local excitation layer, a spike refining layer and a visual reconstruction layer motivated by the bio-realistic leaky integrate-and-fire (LIF) neurons and synapse connection with spike-timing dependent plasticity (STDP) rule. To evaluate the performance, a spike dataset was constructed for normal and high-speed scenes in real-world recorded by the spike camera. The experimental results show that the proposed approach can reconstruct the visual images with 40,000 frames per second in both normal and high-speed scenes, while achieving high dynamic range and high image quality.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3146140</identifier><identifier>PMID: 35085071</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; bio-inspired vision ; Biomimetics ; Cameras ; Fovea ; Frames per second ; High speed ; Image quality ; Image reconstruction ; Image sensors ; Models, Neurological ; Neuromorphic vision sensor ; Neurons ; Retina ; spike camera ; spiking neuron model ; Temporal resolution ; texture reconstruction ; Vision ; Visual Perception - physiology ; Visualization ; Voltage control</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.1233-1249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-d119c60b034b1e6d051c2580c16cf129a0ed26f050e4fea64a06e7c3682fd7403</cites><orcidid>0000-0002-7468-0622 ; 0000-0002-0249-8100 ; 0000-0001-6487-0441 ; 0000-0002-4234-6099 ; 0000-0002-2978-5935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9695196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9695196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35085071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Dong, Siwei</creatorcontrib><creatorcontrib>Li, Jianing</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><creatorcontrib>Tian, Yonghong</creatorcontrib><title>Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retinal periphery, the spike camera was developed recently to perceive fine textures by simulating a small retinal region called the fovea. For this new type of neuromorphic camera, how to reconstruct ultra-high speed visual images from spike data becomes an important yet challenging issue in visual scene perception, analysis, and recognition applications. In this paper, a bio-inspired visual reconstruction framework for the spike camera is proposed for the first time. Its core idea is to use the biologically inspired adaptive adjustment mechanisms, combined with the spatiotemporal spike information extracted by the proposed model, to reconstruct the full texture of natural scenes in an ultra-high temporal resolution. Specifically, the proposed model consists of a motion local excitation layer, a spike refining layer and a visual reconstruction layer motivated by the bio-realistic leaky integrate-and-fire (LIF) neurons and synapse connection with spike-timing dependent plasticity (STDP) rule. To evaluate the performance, a spike dataset was constructed for normal and high-speed scenes in real-world recorded by the spike camera. The experimental results show that the proposed approach can reconstruct the visual images with 40,000 frames per second in both normal and high-speed scenes, while achieving high dynamic range and high image quality.</description><subject>Algorithms</subject><subject>bio-inspired vision</subject><subject>Biomimetics</subject><subject>Cameras</subject><subject>Fovea</subject><subject>Frames per second</subject><subject>High speed</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image sensors</subject><subject>Models, Neurological</subject><subject>Neuromorphic vision sensor</subject><subject>Neurons</subject><subject>Retina</subject><subject>spike camera</subject><subject>spiking neuron model</subject><subject>Temporal resolution</subject><subject>texture reconstruction</subject><subject>Vision</subject><subject>Visual Perception - physiology</subject><subject>Visualization</subject><subject>Voltage control</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EokvLFwAJReLCJcuM7TjOsVqxtNIWULvt1fI6k-KSxIudVOLbN_unPXCZkd783mg0j7EPCHNEqL6uf51fXc45cD4XKBVKeMVmWIkqF4WoXrMZoOK51lyfsHcpPQCgLEC8ZSeiAF1AiTPW3rZDtPmFv_-dranbhmjb7JpSaMfBhz6782ncKy70aYij26vLGLrMZsvwSDZf-T-U3Wx3dWE7ijZ79HYv-P4--0FjnBxXoab2jL1pbJvo_bGfstvlt_XiIl_9_H65OF_lTgAf8hqxcgo2IOQGSdVQoOOFBofKNcgrC1Rz1UABJBuySlpQVDqhNG_qUoI4ZV8Oe7cx_B0pDabzyVHb2p7CmAxXXGgNJegJ_fwf-hDG2E_XGV7KUiEUEieKHygXQ0qRGrONvrPxn0EwuyzMPguzy8Ics5hMn46rx01H9Yvl-fkT8PEAeCJ6GVeqKrBS4gkIMoyU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhu, Lin</creator><creator>Dong, Siwei</creator><creator>Li, Jianing</creator><creator>Huang, Tiejun</creator><creator>Tian, Yonghong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7468-0622</orcidid><orcidid>https://orcid.org/0000-0002-0249-8100</orcidid><orcidid>https://orcid.org/0000-0001-6487-0441</orcidid><orcidid>https://orcid.org/0000-0002-4234-6099</orcidid><orcidid>https://orcid.org/0000-0002-2978-5935</orcidid></search><sort><creationdate>20230101</creationdate><title>Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model</title><author>Zhu, Lin ; Dong, Siwei ; Li, Jianing ; Huang, Tiejun ; Tian, Yonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-d119c60b034b1e6d051c2580c16cf129a0ed26f050e4fea64a06e7c3682fd7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>bio-inspired vision</topic><topic>Biomimetics</topic><topic>Cameras</topic><topic>Fovea</topic><topic>Frames per second</topic><topic>High speed</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image sensors</topic><topic>Models, Neurological</topic><topic>Neuromorphic vision sensor</topic><topic>Neurons</topic><topic>Retina</topic><topic>spike camera</topic><topic>spiking neuron model</topic><topic>Temporal resolution</topic><topic>texture reconstruction</topic><topic>Vision</topic><topic>Visual Perception - physiology</topic><topic>Visualization</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Dong, Siwei</creatorcontrib><creatorcontrib>Li, Jianing</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><creatorcontrib>Tian, Yonghong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Lin</au><au>Dong, Siwei</au><au>Li, Jianing</au><au>Huang, Tiejun</au><au>Tian, Yonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><spage>1233</spage><epage>1249</epage><pages>1233-1249</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Neuromorphic vision sensor is a new bio-inspired imaging paradigm emerged in recent years. It uses the asynchronous spike signals instead of the traditional frame-based manner to achieve ultra-high speed sampling. Unlike the dynamic vision sensor (DVS) that perceives movement by imitating the retinal periphery, the spike camera was developed recently to perceive fine textures by simulating a small retinal region called the fovea. For this new type of neuromorphic camera, how to reconstruct ultra-high speed visual images from spike data becomes an important yet challenging issue in visual scene perception, analysis, and recognition applications. In this paper, a bio-inspired visual reconstruction framework for the spike camera is proposed for the first time. Its core idea is to use the biologically inspired adaptive adjustment mechanisms, combined with the spatiotemporal spike information extracted by the proposed model, to reconstruct the full texture of natural scenes in an ultra-high temporal resolution. Specifically, the proposed model consists of a motion local excitation layer, a spike refining layer and a visual reconstruction layer motivated by the bio-realistic leaky integrate-and-fire (LIF) neurons and synapse connection with spike-timing dependent plasticity (STDP) rule. To evaluate the performance, a spike dataset was constructed for normal and high-speed scenes in real-world recorded by the spike camera. The experimental results show that the proposed approach can reconstruct the visual images with 40,000 frames per second in both normal and high-speed scenes, while achieving high dynamic range and high image quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35085071</pmid><doi>10.1109/TPAMI.2022.3146140</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7468-0622</orcidid><orcidid>https://orcid.org/0000-0002-0249-8100</orcidid><orcidid>https://orcid.org/0000-0001-6487-0441</orcidid><orcidid>https://orcid.org/0000-0002-4234-6099</orcidid><orcidid>https://orcid.org/0000-0002-2978-5935</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.1233-1249
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_35085071
source IEEE Electronic Library (IEL)
subjects Algorithms
bio-inspired vision
Biomimetics
Cameras
Fovea
Frames per second
High speed
Image quality
Image reconstruction
Image sensors
Models, Neurological
Neuromorphic vision sensor
Neurons
Retina
spike camera
spiking neuron model
Temporal resolution
texture reconstruction
Vision
Visual Perception - physiology
Visualization
Voltage control
title Ultra-High Temporal Resolution Visual Reconstruction From a Fovea-Like Spike Camera via Spiking Neuron Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-High%20Temporal%20Resolution%20Visual%20Reconstruction%20From%20a%20Fovea-Like%20Spike%20Camera%20via%20Spiking%20Neuron%20Model&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhu,%20Lin&rft.date=2023-01-01&rft.volume=45&rft.issue=1&rft.spage=1233&rft.epage=1249&rft.pages=1233-1249&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3146140&rft_dat=%3Cproquest_RIE%3E2623880708%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747610541&rft_id=info:pmid/35085071&rft_ieee_id=9695196&rfr_iscdi=true