Stability of Polymeric Membranes to UV Exposure before and after Coating with TiO 2 Nanoparticles

The combination of photocatalysis and membrane filtration in a single reactor has been proposed, since the photocatalytic treatment may degrade the pollutants retained by the membrane and reduce fouling. However, polymeric membranes can be susceptible to degradation by UV radiation and free radicals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-12, Vol.14 (1)
Hauptverfasser: Labuto, Geórgia, Sanches, Sandra, Crespo, João G, Pereira, Vanessa J, Huertas, Rosa M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Polymers
container_volume 14
creator Labuto, Geórgia
Sanches, Sandra
Crespo, João G
Pereira, Vanessa J
Huertas, Rosa M
description The combination of photocatalysis and membrane filtration in a single reactor has been proposed, since the photocatalytic treatment may degrade the pollutants retained by the membrane and reduce fouling. However, polymeric membranes can be susceptible to degradation by UV radiation and free radicals. In the present study, five commercial polymeric membranes were exposed to ultraviolet (UV) radiation before and after applying a sol-gel coating with TiO nanoparticles. Membrane stability was characterized by changes in hydrophilicity as well as analysis of soluble substances and nanoparticles detached into the aqueous medium, and by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometry (EDS) for structural, morphological, and elemental distribution analysis, respectively. The TiO coating conferred photocatalytic properties to the membranes and protected them during 6 h of UV radiation exposures, reducing or eliminating chemical and morphological changes, and in some cases, improving their mechanical resistance. A selected commercial nanofiltration membrane was coated with TiO and used in a hybrid reactor with a low-pressure UV lamp, promoting photocatalysis coupled with cross-flow filtration in order to remove 17α-ethinylestradiol spiked into an aqueous matrix, achieving an efficiency close to 100% after 180 min of combined filtration and photocatalysis, and almost 80% after 90 min.
doi_str_mv 10.3390/polym14010124
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35012146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35012146</sourcerecordid><originalsourceid>FETCH-pubmed_primary_350121463</originalsourceid><addsrcrecordid>eNqFjjsLwjAURoMgKuroKvcPqEkTK86iuPgAH6vc6q1G2iYkEe2_t4LOfstZDoePsZ7gQymnfGRNVuZCccFFpGqsFfGJHCgZ8ybren_n1dQ4jsWkwZpyXElCxS2Gu4CJznQowaSw_TTI6TOsKE8cFuQhGDgcYf6yxj8cQUKpqYDFBTAN5GBmMOjiCk8dbrDXG4hgjYWx6II-Z-Q7rJ5i5qn7ZZv1F_P9bDmwjySny8k6naMrT79P8q_wBmknR7c</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of Polymeric Membranes to UV Exposure before and after Coating with TiO 2 Nanoparticles</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Labuto, Geórgia ; Sanches, Sandra ; Crespo, João G ; Pereira, Vanessa J ; Huertas, Rosa M</creator><creatorcontrib>Labuto, Geórgia ; Sanches, Sandra ; Crespo, João G ; Pereira, Vanessa J ; Huertas, Rosa M</creatorcontrib><description>The combination of photocatalysis and membrane filtration in a single reactor has been proposed, since the photocatalytic treatment may degrade the pollutants retained by the membrane and reduce fouling. However, polymeric membranes can be susceptible to degradation by UV radiation and free radicals. In the present study, five commercial polymeric membranes were exposed to ultraviolet (UV) radiation before and after applying a sol-gel coating with TiO nanoparticles. Membrane stability was characterized by changes in hydrophilicity as well as analysis of soluble substances and nanoparticles detached into the aqueous medium, and by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometry (EDS) for structural, morphological, and elemental distribution analysis, respectively. The TiO coating conferred photocatalytic properties to the membranes and protected them during 6 h of UV radiation exposures, reducing or eliminating chemical and morphological changes, and in some cases, improving their mechanical resistance. A selected commercial nanofiltration membrane was coated with TiO and used in a hybrid reactor with a low-pressure UV lamp, promoting photocatalysis coupled with cross-flow filtration in order to remove 17α-ethinylestradiol spiked into an aqueous matrix, achieving an efficiency close to 100% after 180 min of combined filtration and photocatalysis, and almost 80% after 90 min.</description><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14010124</identifier><identifier>PMID: 35012146</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Polymers, 2021-12, Vol.14 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7411-4479 ; 0000-0002-5403-8974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35012146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Labuto, Geórgia</creatorcontrib><creatorcontrib>Sanches, Sandra</creatorcontrib><creatorcontrib>Crespo, João G</creatorcontrib><creatorcontrib>Pereira, Vanessa J</creatorcontrib><creatorcontrib>Huertas, Rosa M</creatorcontrib><title>Stability of Polymeric Membranes to UV Exposure before and after Coating with TiO 2 Nanoparticles</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The combination of photocatalysis and membrane filtration in a single reactor has been proposed, since the photocatalytic treatment may degrade the pollutants retained by the membrane and reduce fouling. However, polymeric membranes can be susceptible to degradation by UV radiation and free radicals. In the present study, five commercial polymeric membranes were exposed to ultraviolet (UV) radiation before and after applying a sol-gel coating with TiO nanoparticles. Membrane stability was characterized by changes in hydrophilicity as well as analysis of soluble substances and nanoparticles detached into the aqueous medium, and by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometry (EDS) for structural, morphological, and elemental distribution analysis, respectively. The TiO coating conferred photocatalytic properties to the membranes and protected them during 6 h of UV radiation exposures, reducing or eliminating chemical and morphological changes, and in some cases, improving their mechanical resistance. A selected commercial nanofiltration membrane was coated with TiO and used in a hybrid reactor with a low-pressure UV lamp, promoting photocatalysis coupled with cross-flow filtration in order to remove 17α-ethinylestradiol spiked into an aqueous matrix, achieving an efficiency close to 100% after 180 min of combined filtration and photocatalysis, and almost 80% after 90 min.</description><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFjjsLwjAURoMgKuroKvcPqEkTK86iuPgAH6vc6q1G2iYkEe2_t4LOfstZDoePsZ7gQymnfGRNVuZCccFFpGqsFfGJHCgZ8ybren_n1dQ4jsWkwZpyXElCxS2Gu4CJznQowaSw_TTI6TOsKE8cFuQhGDgcYf6yxj8cQUKpqYDFBTAN5GBmMOjiCk8dbrDXG4hgjYWx6II-Z-Q7rJ5i5qn7ZZv1F_P9bDmwjySny8k6naMrT79P8q_wBmknR7c</recordid><startdate>20211230</startdate><enddate>20211230</enddate><creator>Labuto, Geórgia</creator><creator>Sanches, Sandra</creator><creator>Crespo, João G</creator><creator>Pereira, Vanessa J</creator><creator>Huertas, Rosa M</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-7411-4479</orcidid><orcidid>https://orcid.org/0000-0002-5403-8974</orcidid></search><sort><creationdate>20211230</creationdate><title>Stability of Polymeric Membranes to UV Exposure before and after Coating with TiO 2 Nanoparticles</title><author>Labuto, Geórgia ; Sanches, Sandra ; Crespo, João G ; Pereira, Vanessa J ; Huertas, Rosa M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_350121463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labuto, Geórgia</creatorcontrib><creatorcontrib>Sanches, Sandra</creatorcontrib><creatorcontrib>Crespo, João G</creatorcontrib><creatorcontrib>Pereira, Vanessa J</creatorcontrib><creatorcontrib>Huertas, Rosa M</creatorcontrib><collection>PubMed</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labuto, Geórgia</au><au>Sanches, Sandra</au><au>Crespo, João G</au><au>Pereira, Vanessa J</au><au>Huertas, Rosa M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Polymeric Membranes to UV Exposure before and after Coating with TiO 2 Nanoparticles</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2021-12-30</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><eissn>2073-4360</eissn><abstract>The combination of photocatalysis and membrane filtration in a single reactor has been proposed, since the photocatalytic treatment may degrade the pollutants retained by the membrane and reduce fouling. However, polymeric membranes can be susceptible to degradation by UV radiation and free radicals. In the present study, five commercial polymeric membranes were exposed to ultraviolet (UV) radiation before and after applying a sol-gel coating with TiO nanoparticles. Membrane stability was characterized by changes in hydrophilicity as well as analysis of soluble substances and nanoparticles detached into the aqueous medium, and by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometry (EDS) for structural, morphological, and elemental distribution analysis, respectively. The TiO coating conferred photocatalytic properties to the membranes and protected them during 6 h of UV radiation exposures, reducing or eliminating chemical and morphological changes, and in some cases, improving their mechanical resistance. A selected commercial nanofiltration membrane was coated with TiO and used in a hybrid reactor with a low-pressure UV lamp, promoting photocatalysis coupled with cross-flow filtration in order to remove 17α-ethinylestradiol spiked into an aqueous matrix, achieving an efficiency close to 100% after 180 min of combined filtration and photocatalysis, and almost 80% after 90 min.</abstract><cop>Switzerland</cop><pmid>35012146</pmid><doi>10.3390/polym14010124</doi><orcidid>https://orcid.org/0000-0002-7411-4479</orcidid><orcidid>https://orcid.org/0000-0002-5403-8974</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2073-4360
ispartof Polymers, 2021-12, Vol.14 (1)
issn 2073-4360
language eng
recordid cdi_pubmed_primary_35012146
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
title Stability of Polymeric Membranes to UV Exposure before and after Coating with TiO 2 Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Polymeric%20Membranes%20to%20UV%20Exposure%20before%20and%20after%20Coating%20with%20TiO%202%20Nanoparticles&rft.jtitle=Polymers&rft.au=Labuto,%20Ge%C3%B3rgia&rft.date=2021-12-30&rft.volume=14&rft.issue=1&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14010124&rft_dat=%3Cpubmed%3E35012146%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35012146&rfr_iscdi=true