Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values

In high-stakes applications of data-driven decision-making such as healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncertainty. There are two main challenges usually associated with this problem. First,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-09, Vol.34 (9), p.6368-6378
Hauptverfasser: Abroshan, Mahed, Yip, Kai Hou, Tekin, Cem, van der Schaar, Mihaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6378
container_issue 9
container_start_page 6368
container_title IEEE transaction on neural networks and learning systems
container_volume 34
creator Abroshan, Mahed
Yip, Kai Hou
Tekin, Cem
van der Schaar, Mihaela
description In high-stakes applications of data-driven decision-making such as healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncertainty. There are two main challenges usually associated with this problem. First, learning through online exploration is not possible due to the critical nature of such applications. Therefore, we need to resort to observational datasets with no counterfactuals. Second, such datasets are usually imperfect, additionally cursed with missing values in the attributes of features. In this article, we consider the problem of constructing personalized policies using logged data when there are missing values in the attributes of features in both training and test data. The goal is to recommend an action (treatment) when \tilde { \boldsymbol {X}} , a degraded version of \boldsymbol {X} with missing values, is observed. We consider three strategies for dealing with missingness. In particular, we introduce the conservative strategy where the policy is designed to safely handle the uncertainty due to missingness. In order to implement this strategy, we need to estimate posterior distribution p(\boldsymbol {X}| \tilde { \boldsymbol {X}}) and use a variational autoencoder to achieve this. In particular, our method is based on partial variational autoencoders (PVAEs) that are designed to capture the underlying structure of features with missing values.
doi_str_mv 10.1109/TNNLS.2021.3136385
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35007201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9675815</ieee_id><sourcerecordid>2859709896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-1e96ce2780e9ecaea8e1ee873d60cec01d499a83cd6c7cad49984fcf9d99e06c3</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EAgT9AZCQJTZsWvxoHHuJylMKD4kW2EXGmRSjNC52Uom_x6GhC7yxZ3zuzNgXoSNKRpQSdT59eMieR4wwOuKUCy6TLbTPqGBDxqXc3pzTtz00COGTxCVIIsZqF-3xhJCUEbqPzMTVAfxKN3YF-MlV1nzjLtf41jTW1XgWbD3HL9pb3cW6whdt46A2rgAfcOk8ztx8DgW-1I3Gr7b5wPc29KqqhXCIdkpdBRj0-wGaXV9NJ7fD7PHmbnKRDQ1XSTOkoIQBlkoCCowGLYECyJQXghgwhBZjpbTkphAmNbqL5Lg0pSqUAiIMP0Bn67pL775i3yZf2GCgqnQNrg05E1RKJZVII3r6D_10rY-Pi5RMVEo6LFJsTRnvQvBQ5ktvF9p_55TknQv5rwt550LeuxBFJ33p9n0BxUby9-cROF4DFgA213GqRNKE_wDGSozx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859709896</pqid></control><display><type>article</type><title>Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values</title><source>IEEE Electronic Library (IEL)</source><creator>Abroshan, Mahed ; Yip, Kai Hou ; Tekin, Cem ; van der Schaar, Mihaela</creator><creatorcontrib>Abroshan, Mahed ; Yip, Kai Hou ; Tekin, Cem ; van der Schaar, Mihaela</creatorcontrib><description><![CDATA[In high-stakes applications of data-driven decision-making such as healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncertainty. There are two main challenges usually associated with this problem. First, learning through online exploration is not possible due to the critical nature of such applications. Therefore, we need to resort to observational datasets with no counterfactuals. Second, such datasets are usually imperfect, additionally cursed with missing values in the attributes of features. In this article, we consider the problem of constructing personalized policies using logged data when there are missing values in the attributes of features in both training and test data. The goal is to recommend an action (treatment) when <inline-formula> <tex-math notation="LaTeX">\tilde { \boldsymbol {X}} </tex-math></inline-formula>, a degraded version of <inline-formula> <tex-math notation="LaTeX">\boldsymbol {X} </tex-math></inline-formula> with missing values, is observed. We consider three strategies for dealing with missingness. In particular, we introduce the conservative strategy where the policy is designed to safely handle the uncertainty due to missingness. In order to implement this strategy, we need to estimate posterior distribution <inline-formula> <tex-math notation="LaTeX">p(\boldsymbol {X}| \tilde { \boldsymbol {X}}) </tex-math></inline-formula> and use a variational autoencoder to achieve this. In particular, our method is based on partial variational autoencoders (PVAEs) that are designed to capture the underlying structure of features with missing values.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3136385</identifier><identifier>PMID: 35007201</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Datasets ; Decision making ; Estimation ; IP networks ; Missing values ; Noise measurement ; observational data ; policy construction ; Task analysis ; Training data ; Tuning ; Uncertainty ; variational autoencoder</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-09, Vol.34 (9), p.6368-6378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-1e96ce2780e9ecaea8e1ee873d60cec01d499a83cd6c7cad49984fcf9d99e06c3</citedby><cites>FETCH-LOGICAL-c395t-1e96ce2780e9ecaea8e1ee873d60cec01d499a83cd6c7cad49984fcf9d99e06c3</cites><orcidid>0000-0002-0520-3953 ; 0000-0003-4361-4021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9675815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9675815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35007201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abroshan, Mahed</creatorcontrib><creatorcontrib>Yip, Kai Hou</creatorcontrib><creatorcontrib>Tekin, Cem</creatorcontrib><creatorcontrib>van der Schaar, Mihaela</creatorcontrib><title>Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[In high-stakes applications of data-driven decision-making such as healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncertainty. There are two main challenges usually associated with this problem. First, learning through online exploration is not possible due to the critical nature of such applications. Therefore, we need to resort to observational datasets with no counterfactuals. Second, such datasets are usually imperfect, additionally cursed with missing values in the attributes of features. In this article, we consider the problem of constructing personalized policies using logged data when there are missing values in the attributes of features in both training and test data. The goal is to recommend an action (treatment) when <inline-formula> <tex-math notation="LaTeX">\tilde { \boldsymbol {X}} </tex-math></inline-formula>, a degraded version of <inline-formula> <tex-math notation="LaTeX">\boldsymbol {X} </tex-math></inline-formula> with missing values, is observed. We consider three strategies for dealing with missingness. In particular, we introduce the conservative strategy where the policy is designed to safely handle the uncertainty due to missingness. In order to implement this strategy, we need to estimate posterior distribution <inline-formula> <tex-math notation="LaTeX">p(\boldsymbol {X}| \tilde { \boldsymbol {X}}) </tex-math></inline-formula> and use a variational autoencoder to achieve this. In particular, our method is based on partial variational autoencoders (PVAEs) that are designed to capture the underlying structure of features with missing values.]]></description><subject>Datasets</subject><subject>Decision making</subject><subject>Estimation</subject><subject>IP networks</subject><subject>Missing values</subject><subject>Noise measurement</subject><subject>observational data</subject><subject>policy construction</subject><subject>Task analysis</subject><subject>Training data</subject><subject>Tuning</subject><subject>Uncertainty</subject><subject>variational autoencoder</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctOwzAQRS0EAgT9AZCQJTZsWvxoHHuJylMKD4kW2EXGmRSjNC52Uom_x6GhC7yxZ3zuzNgXoSNKRpQSdT59eMieR4wwOuKUCy6TLbTPqGBDxqXc3pzTtz00COGTxCVIIsZqF-3xhJCUEbqPzMTVAfxKN3YF-MlV1nzjLtf41jTW1XgWbD3HL9pb3cW6whdt46A2rgAfcOk8ztx8DgW-1I3Gr7b5wPc29KqqhXCIdkpdBRj0-wGaXV9NJ7fD7PHmbnKRDQ1XSTOkoIQBlkoCCowGLYECyJQXghgwhBZjpbTkphAmNbqL5Lg0pSqUAiIMP0Bn67pL775i3yZf2GCgqnQNrg05E1RKJZVII3r6D_10rY-Pi5RMVEo6LFJsTRnvQvBQ5ktvF9p_55TknQv5rwt550LeuxBFJ33p9n0BxUby9-cROF4DFgA213GqRNKE_wDGSozx</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Abroshan, Mahed</creator><creator>Yip, Kai Hou</creator><creator>Tekin, Cem</creator><creator>van der Schaar, Mihaela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0520-3953</orcidid><orcidid>https://orcid.org/0000-0003-4361-4021</orcidid></search><sort><creationdate>20230901</creationdate><title>Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values</title><author>Abroshan, Mahed ; Yip, Kai Hou ; Tekin, Cem ; van der Schaar, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-1e96ce2780e9ecaea8e1ee873d60cec01d499a83cd6c7cad49984fcf9d99e06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Decision making</topic><topic>Estimation</topic><topic>IP networks</topic><topic>Missing values</topic><topic>Noise measurement</topic><topic>observational data</topic><topic>policy construction</topic><topic>Task analysis</topic><topic>Training data</topic><topic>Tuning</topic><topic>Uncertainty</topic><topic>variational autoencoder</topic><toplevel>online_resources</toplevel><creatorcontrib>Abroshan, Mahed</creatorcontrib><creatorcontrib>Yip, Kai Hou</creatorcontrib><creatorcontrib>Tekin, Cem</creatorcontrib><creatorcontrib>van der Schaar, Mihaela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abroshan, Mahed</au><au>Yip, Kai Hou</au><au>Tekin, Cem</au><au>van der Schaar, Mihaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>34</volume><issue>9</issue><spage>6368</spage><epage>6378</epage><pages>6368-6378</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[In high-stakes applications of data-driven decision-making such as healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncertainty. There are two main challenges usually associated with this problem. First, learning through online exploration is not possible due to the critical nature of such applications. Therefore, we need to resort to observational datasets with no counterfactuals. Second, such datasets are usually imperfect, additionally cursed with missing values in the attributes of features. In this article, we consider the problem of constructing personalized policies using logged data when there are missing values in the attributes of features in both training and test data. The goal is to recommend an action (treatment) when <inline-formula> <tex-math notation="LaTeX">\tilde { \boldsymbol {X}} </tex-math></inline-formula>, a degraded version of <inline-formula> <tex-math notation="LaTeX">\boldsymbol {X} </tex-math></inline-formula> with missing values, is observed. We consider three strategies for dealing with missingness. In particular, we introduce the conservative strategy where the policy is designed to safely handle the uncertainty due to missingness. In order to implement this strategy, we need to estimate posterior distribution <inline-formula> <tex-math notation="LaTeX">p(\boldsymbol {X}| \tilde { \boldsymbol {X}}) </tex-math></inline-formula> and use a variational autoencoder to achieve this. In particular, our method is based on partial variational autoencoders (PVAEs) that are designed to capture the underlying structure of features with missing values.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>35007201</pmid><doi>10.1109/TNNLS.2021.3136385</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0520-3953</orcidid><orcidid>https://orcid.org/0000-0003-4361-4021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-09, Vol.34 (9), p.6368-6378
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_35007201
source IEEE Electronic Library (IEL)
subjects Datasets
Decision making
Estimation
IP networks
Missing values
Noise measurement
observational data
policy construction
Task analysis
Training data
Tuning
Uncertainty
variational autoencoder
title Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservative%20Policy%20Construction%20Using%20Variational%20Autoencoders%20for%20Logged%20Data%20With%20Missing%20Values&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Abroshan,%20Mahed&rft.date=2023-09-01&rft.volume=34&rft.issue=9&rft.spage=6368&rft.epage=6378&rft.pages=6368-6378&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3136385&rft_dat=%3Cproquest_RIE%3E2859709896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859709896&rft_id=info:pmid/35007201&rft_ieee_id=9675815&rfr_iscdi=true