Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions
Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.61-71 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 30 |
creator | Cerone, G. L. Giangrande, A. Ghislieri, M. Gazzoni, M. Piitulainen, H. Botter, A. |
description | Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration. |
doi_str_mv | 10.1109/TNSRE.2022.3140220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34982687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9668845</ieee_id><doaj_id>oai_doaj_org_article_9373bb2323ee4638815bc99c95332677</doaj_id><sourcerecordid>2623469968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-afef736f11cc32046ff5cecc4662e8b1b37fcaca3b809a3809a48f8247a4e65e3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEoqXwB0BClrhwyeKvOPaxtOl2pVIkWuBoOc545SUbt3Yi1H-Ps7vdAxeP5Xnm0VhvUbwneEEIVl_ub-9-NAuKKV0wwnPBL4pTUlWyxJTgl_Od8ZIzik-KNyltMCa1qOrXxQnjSlIh69PCXkLy6wGZoUO_TO87M_owoOCQQb99hB5SQl9D94TuYEgholsY_4b4B7l8Xw0jrKMZoUNNs9w5ri_L1HxbonP7OPnkZ1l6W7xypk_w7lDPip9Xzf3FdXnzfbm6OL8pLRdkLI0DVzPhCLE278yFc5UFm5uCgmxJy2pnjTWslVgZNh9cOkl5bTiICthZsdp7u2A2-iH6rYlPOhivdw8hrrWJo7c9aMVq1raUUQbABZOSVK1VyqqKMSrqOrs-710PMTxOkEa99clC35sBwpQ0FUSoSlBFMvrpP3QTpjjkn2aKMi6UEjJTdE_ZGFKK4I4LEqznOPUuTj3HqQ9x5qGPB_XUbqE7jjznl4EPe8ADwLGthJCSV-wfPZ2hZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469968</pqid></control><display><type>article</type><title>Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cerone, G. L. ; Giangrande, A. ; Ghislieri, M. ; Gazzoni, M. ; Piitulainen, H. ; Botter, A.</creator><creatorcontrib>Cerone, G. L. ; Giangrande, A. ; Ghislieri, M. ; Gazzoni, M. ; Piitulainen, H. ; Botter, A.</creatorcontrib><description>Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3140220</identifier><identifier>PMID: 34982687</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biopotential acquisition systems ; Body area networks ; Body sensor networks ; Brain ; EEG ; Electroencephalography ; Electromyography ; Electromyography - methods ; evoked potentials ; High Density-surface EMG (HD-sEMG) ; Humans ; Instrumentation ; Instruments ; Modules ; Muscle contraction ; Muscles ; Receivers ; Sensorimotor integration ; Sensors ; Signal Processing, Computer-Assisted ; Signal quality ; Synchronism ; Synchronization ; wireless body sensor network ; Wireless communication ; Wireless networks ; Wireless Technology</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.61-71</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-afef736f11cc32046ff5cecc4662e8b1b37fcaca3b809a3809a48f8247a4e65e3</citedby><cites>FETCH-LOGICAL-c461t-afef736f11cc32046ff5cecc4662e8b1b37fcaca3b809a3809a48f8247a4e65e3</cites><orcidid>0000-0001-6866-6587 ; 0000-0002-5295-5314 ; 0000-0001-7626-1563 ; 0000-0002-4797-0667 ; 0000-0001-5939-6212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34982687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cerone, G. L.</creatorcontrib><creatorcontrib>Giangrande, A.</creatorcontrib><creatorcontrib>Ghislieri, M.</creatorcontrib><creatorcontrib>Gazzoni, M.</creatorcontrib><creatorcontrib>Piitulainen, H.</creatorcontrib><creatorcontrib>Botter, A.</creatorcontrib><title>Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.</description><subject>Biopotential acquisition systems</subject><subject>Body area networks</subject><subject>Body sensor networks</subject><subject>Brain</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>evoked potentials</subject><subject>High Density-surface EMG (HD-sEMG)</subject><subject>Humans</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Modules</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Receivers</subject><subject>Sensorimotor integration</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal quality</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>wireless body sensor network</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless Technology</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhiMEoqXwB0BClrhwyeKvOPaxtOl2pVIkWuBoOc545SUbt3Yi1H-Ps7vdAxeP5Xnm0VhvUbwneEEIVl_ub-9-NAuKKV0wwnPBL4pTUlWyxJTgl_Od8ZIzik-KNyltMCa1qOrXxQnjSlIh69PCXkLy6wGZoUO_TO87M_owoOCQQb99hB5SQl9D94TuYEgholsY_4b4B7l8Xw0jrKMZoUNNs9w5ri_L1HxbonP7OPnkZ1l6W7xypk_w7lDPip9Xzf3FdXnzfbm6OL8pLRdkLI0DVzPhCLE278yFc5UFm5uCgmxJy2pnjTWslVgZNh9cOkl5bTiICthZsdp7u2A2-iH6rYlPOhivdw8hrrWJo7c9aMVq1raUUQbABZOSVK1VyqqKMSrqOrs-710PMTxOkEa99clC35sBwpQ0FUSoSlBFMvrpP3QTpjjkn2aKMi6UEjJTdE_ZGFKK4I4LEqznOPUuTj3HqQ9x5qGPB_XUbqE7jjznl4EPe8ADwLGthJCSV-wfPZ2hZA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cerone, G. L.</creator><creator>Giangrande, A.</creator><creator>Ghislieri, M.</creator><creator>Gazzoni, M.</creator><creator>Piitulainen, H.</creator><creator>Botter, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6866-6587</orcidid><orcidid>https://orcid.org/0000-0002-5295-5314</orcidid><orcidid>https://orcid.org/0000-0001-7626-1563</orcidid><orcidid>https://orcid.org/0000-0002-4797-0667</orcidid><orcidid>https://orcid.org/0000-0001-5939-6212</orcidid></search><sort><creationdate>2022</creationdate><title>Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions</title><author>Cerone, G. L. ; Giangrande, A. ; Ghislieri, M. ; Gazzoni, M. ; Piitulainen, H. ; Botter, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-afef736f11cc32046ff5cecc4662e8b1b37fcaca3b809a3809a48f8247a4e65e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biopotential acquisition systems</topic><topic>Body area networks</topic><topic>Body sensor networks</topic><topic>Brain</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>evoked potentials</topic><topic>High Density-surface EMG (HD-sEMG)</topic><topic>Humans</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Modules</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Receivers</topic><topic>Sensorimotor integration</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal quality</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>wireless body sensor network</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerone, G. L.</creatorcontrib><creatorcontrib>Giangrande, A.</creatorcontrib><creatorcontrib>Ghislieri, M.</creatorcontrib><creatorcontrib>Gazzoni, M.</creatorcontrib><creatorcontrib>Piitulainen, H.</creatorcontrib><creatorcontrib>Botter, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerone, G. L.</au><au>Giangrande, A.</au><au>Ghislieri, M.</au><au>Gazzoni, M.</au><au>Piitulainen, H.</au><au>Botter, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34982687</pmid><doi>10.1109/TNSRE.2022.3140220</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6866-6587</orcidid><orcidid>https://orcid.org/0000-0002-5295-5314</orcidid><orcidid>https://orcid.org/0000-0001-7626-1563</orcidid><orcidid>https://orcid.org/0000-0002-4797-0667</orcidid><orcidid>https://orcid.org/0000-0001-5939-6212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.61-71 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_pubmed_primary_34982687 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biopotential acquisition systems Body area networks Body sensor networks Brain EEG Electroencephalography Electromyography Electromyography - methods evoked potentials High Density-surface EMG (HD-sEMG) Humans Instrumentation Instruments Modules Muscle contraction Muscles Receivers Sensorimotor integration Sensors Signal Processing, Computer-Assisted Signal quality Synchronism Synchronization wireless body sensor network Wireless communication Wireless networks Wireless Technology |
title | Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Validation%20of%20a%20Wireless%20Body%20Sensor%20Network%20for%20Integrated%20EEG%20and%20HD-sEMG%20Acquisitions&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Cerone,%20G.%20L.&rft.date=2022&rft.volume=30&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3140220&rft_dat=%3Cproquest_pubme%3E2623469968%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623469968&rft_id=info:pmid/34982687&rft_ieee_id=9668845&rft_doaj_id=oai_doaj_org_article_9373bb2323ee4638815bc99c95332677&rfr_iscdi=true |