Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions

Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.61-71
Hauptverfasser: Cerone, G. L., Giangrande, A., Ghislieri, M., Gazzoni, M., Piitulainen, H., Botter, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 61
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 30
creator Cerone, G. L.
Giangrande, A.
Ghislieri, M.
Gazzoni, M.
Piitulainen, H.
Botter, A.
description Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.
doi_str_mv 10.1109/TNSRE.2022.3140220
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34982687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9668845</ieee_id><doaj_id>oai_doaj_org_article_9373bb2323ee4638815bc99c95332677</doaj_id><sourcerecordid>2623469968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-afef736f11cc32046ff5cecc4662e8b1b37fcaca3b809a3809a48f8247a4e65e3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEoqXwB0BClrhwyeKvOPaxtOl2pVIkWuBoOc545SUbt3Yi1H-Ps7vdAxeP5Xnm0VhvUbwneEEIVl_ub-9-NAuKKV0wwnPBL4pTUlWyxJTgl_Od8ZIzik-KNyltMCa1qOrXxQnjSlIh69PCXkLy6wGZoUO_TO87M_owoOCQQb99hB5SQl9D94TuYEgholsY_4b4B7l8Xw0jrKMZoUNNs9w5ri_L1HxbonP7OPnkZ1l6W7xypk_w7lDPip9Xzf3FdXnzfbm6OL8pLRdkLI0DVzPhCLE278yFc5UFm5uCgmxJy2pnjTWslVgZNh9cOkl5bTiICthZsdp7u2A2-iH6rYlPOhivdw8hrrWJo7c9aMVq1raUUQbABZOSVK1VyqqKMSrqOrs-710PMTxOkEa99clC35sBwpQ0FUSoSlBFMvrpP3QTpjjkn2aKMi6UEjJTdE_ZGFKK4I4LEqznOPUuTj3HqQ9x5qGPB_XUbqE7jjznl4EPe8ADwLGthJCSV-wfPZ2hZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469968</pqid></control><display><type>article</type><title>Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cerone, G. L. ; Giangrande, A. ; Ghislieri, M. ; Gazzoni, M. ; Piitulainen, H. ; Botter, A.</creator><creatorcontrib>Cerone, G. L. ; Giangrande, A. ; Ghislieri, M. ; Gazzoni, M. ; Piitulainen, H. ; Botter, A.</creatorcontrib><description>Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3140220</identifier><identifier>PMID: 34982687</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biopotential acquisition systems ; Body area networks ; Body sensor networks ; Brain ; EEG ; Electroencephalography ; Electromyography ; Electromyography - methods ; evoked potentials ; High Density-surface EMG (HD-sEMG) ; Humans ; Instrumentation ; Instruments ; Modules ; Muscle contraction ; Muscles ; Receivers ; Sensorimotor integration ; Sensors ; Signal Processing, Computer-Assisted ; Signal quality ; Synchronism ; Synchronization ; wireless body sensor network ; Wireless communication ; Wireless networks ; Wireless Technology</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.61-71</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-afef736f11cc32046ff5cecc4662e8b1b37fcaca3b809a3809a48f8247a4e65e3</citedby><cites>FETCH-LOGICAL-c461t-afef736f11cc32046ff5cecc4662e8b1b37fcaca3b809a3809a48f8247a4e65e3</cites><orcidid>0000-0001-6866-6587 ; 0000-0002-5295-5314 ; 0000-0001-7626-1563 ; 0000-0002-4797-0667 ; 0000-0001-5939-6212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34982687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cerone, G. L.</creatorcontrib><creatorcontrib>Giangrande, A.</creatorcontrib><creatorcontrib>Ghislieri, M.</creatorcontrib><creatorcontrib>Gazzoni, M.</creatorcontrib><creatorcontrib>Piitulainen, H.</creatorcontrib><creatorcontrib>Botter, A.</creatorcontrib><title>Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.</description><subject>Biopotential acquisition systems</subject><subject>Body area networks</subject><subject>Body sensor networks</subject><subject>Brain</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>evoked potentials</subject><subject>High Density-surface EMG (HD-sEMG)</subject><subject>Humans</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Modules</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Receivers</subject><subject>Sensorimotor integration</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal quality</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>wireless body sensor network</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless Technology</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhiMEoqXwB0BClrhwyeKvOPaxtOl2pVIkWuBoOc545SUbt3Yi1H-Ps7vdAxeP5Xnm0VhvUbwneEEIVl_ub-9-NAuKKV0wwnPBL4pTUlWyxJTgl_Od8ZIzik-KNyltMCa1qOrXxQnjSlIh69PCXkLy6wGZoUO_TO87M_owoOCQQb99hB5SQl9D94TuYEgholsY_4b4B7l8Xw0jrKMZoUNNs9w5ri_L1HxbonP7OPnkZ1l6W7xypk_w7lDPip9Xzf3FdXnzfbm6OL8pLRdkLI0DVzPhCLE278yFc5UFm5uCgmxJy2pnjTWslVgZNh9cOkl5bTiICthZsdp7u2A2-iH6rYlPOhivdw8hrrWJo7c9aMVq1raUUQbABZOSVK1VyqqKMSrqOrs-710PMTxOkEa99clC35sBwpQ0FUSoSlBFMvrpP3QTpjjkn2aKMi6UEjJTdE_ZGFKK4I4LEqznOPUuTj3HqQ9x5qGPB_XUbqE7jjznl4EPe8ADwLGthJCSV-wfPZ2hZA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cerone, G. L.</creator><creator>Giangrande, A.</creator><creator>Ghislieri, M.</creator><creator>Gazzoni, M.</creator><creator>Piitulainen, H.</creator><creator>Botter, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6866-6587</orcidid><orcidid>https://orcid.org/0000-0002-5295-5314</orcidid><orcidid>https://orcid.org/0000-0001-7626-1563</orcidid><orcidid>https://orcid.org/0000-0002-4797-0667</orcidid><orcidid>https://orcid.org/0000-0001-5939-6212</orcidid></search><sort><creationdate>2022</creationdate><title>Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions</title><author>Cerone, G. L. ; Giangrande, A. ; Ghislieri, M. ; Gazzoni, M. ; Piitulainen, H. ; Botter, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-afef736f11cc32046ff5cecc4662e8b1b37fcaca3b809a3809a48f8247a4e65e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biopotential acquisition systems</topic><topic>Body area networks</topic><topic>Body sensor networks</topic><topic>Brain</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>evoked potentials</topic><topic>High Density-surface EMG (HD-sEMG)</topic><topic>Humans</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Modules</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Receivers</topic><topic>Sensorimotor integration</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal quality</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>wireless body sensor network</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerone, G. L.</creatorcontrib><creatorcontrib>Giangrande, A.</creatorcontrib><creatorcontrib>Ghislieri, M.</creatorcontrib><creatorcontrib>Gazzoni, M.</creatorcontrib><creatorcontrib>Piitulainen, H.</creatorcontrib><creatorcontrib>Botter, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerone, G. L.</au><au>Giangrande, A.</au><au>Ghislieri, M.</au><au>Gazzoni, M.</au><au>Piitulainen, H.</au><au>Botter, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34982687</pmid><doi>10.1109/TNSRE.2022.3140220</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6866-6587</orcidid><orcidid>https://orcid.org/0000-0002-5295-5314</orcidid><orcidid>https://orcid.org/0000-0001-7626-1563</orcidid><orcidid>https://orcid.org/0000-0002-4797-0667</orcidid><orcidid>https://orcid.org/0000-0001-5939-6212</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.61-71
issn 1534-4320
1558-0210
language eng
recordid cdi_pubmed_primary_34982687
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biopotential acquisition systems
Body area networks
Body sensor networks
Brain
EEG
Electroencephalography
Electromyography
Electromyography - methods
evoked potentials
High Density-surface EMG (HD-sEMG)
Humans
Instrumentation
Instruments
Modules
Muscle contraction
Muscles
Receivers
Sensorimotor integration
Sensors
Signal Processing, Computer-Assisted
Signal quality
Synchronism
Synchronization
wireless body sensor network
Wireless communication
Wireless networks
Wireless Technology
title Design and Validation of a Wireless Body Sensor Network for Integrated EEG and HD-sEMG Acquisitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Validation%20of%20a%20Wireless%20Body%20Sensor%20Network%20for%20Integrated%20EEG%20and%20HD-sEMG%20Acquisitions&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Cerone,%20G.%20L.&rft.date=2022&rft.volume=30&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3140220&rft_dat=%3Cproquest_pubme%3E2623469968%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623469968&rft_id=info:pmid/34982687&rft_ieee_id=9668845&rft_doaj_id=oai_doaj_org_article_9373bb2323ee4638815bc99c95332677&rfr_iscdi=true