3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting
Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broade...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2021-07, Vol.8 (7), p.297-215 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | 7 |
container_start_page | 297 |
container_title | Materials horizons |
container_volume | 8 |
creator | Wang, Lin Qiu, Penghe Yang, Tao Zhou, Ningyun Zhai, Mengmeng Li, Yan Zhou, Yadong Zou, Shengli Yang, Mingying Mao, Chuanbin |
description | Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broadened optical absorption through surface plasmon coupling, but their optical bands are still not broad enough to absorb through the solar spectrum and thus are not efficient solar absorbers. Here we discovered first by simulation that 3D structured nanochains of plasmonic nanoparticles presented a remarkably increased optical broadening effect and much longer redshift of the optical peaks due to the enhanced inter-particle coupling effect. Then we fabricated 3D nanochains by assembling gold nanoparticles (AuNPs) around 14 nm ultrathin bionanofibers, the bacterial flagella. The ultrathin biotemplates enabled the 3D arrangement of 50 nm AuNPs along the nanofiber with a very small inter-particle gap, allowing the strong coupling of surface plasmons in a 3D manner. Consistent with the theoretical prediction, the 3D nanochains, when assembled into films, could effectively convert nearly the full spectrum of solar energy into heat, which was further efficiently converted into electricity through a thermoelectric generation unit. Our work represents a nanobiomaterial approach to highly efficient solar thermal power generation.
Ultrathin bionanofibers, bacterial flagella, arrange gold nanoparticles into nanochains with very small inter-particle gaps. The nanochains enhance three-dimensional surface plasmon coupling and convert the full spectrum of solar energy into heat. |
doi_str_mv | 10.1039/d1mh00227a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34846487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548347043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-16cfcc9cf91c51e97cc927bdeb33ec7998a5a78394cc72dfb1e5413946acec963</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiNERau2F-4gi14QUsCOnTg-lhYoUhEXOFvOZLJJ5djBdpD2GfrSeHfLInHyjOab3-P5XRQvGX3PKFcfejaPlFaVNM-Ks4rWrGx4XT8_xkKeFpcxPlBKGRc1bemL4pSLVjSilWfFI78lHw0kDJOxZLBmg9YaYiLpfBpJ3Lo0YpqAdJNPOC_WJIzEuJ6sNgWTxsmRuBjAEMngA0E3GgfYk8llzXIxITdbJODXxU5us2-N3podimGzJaMJvzGmXLsoTgZjI14-nefFz8-fftzclfffv3y9ub4vgTcilayBAUDBoBjUDJXMSSW7HjvOEaRSramNbLkSALLqh45hLVhOmzwmqIafF28Ouj5fqyNMCWEE7xxC0kwqWe-htwdoCf7XmgfU8xRhtxyHfo26aqhouaiEzOjVf-iDX4PLT9BVvYMkFTxT7w4UBB9jwEEvYZpN2GpG9c5Kfcu-3e2tvM7w6yfJtZuxP6J_jcvAqwMQIhyr__4C_wMsNKS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548347043</pqid></control><display><type>article</type><title>3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Lin ; Qiu, Penghe ; Yang, Tao ; Zhou, Ningyun ; Zhai, Mengmeng ; Li, Yan ; Zhou, Yadong ; Zou, Shengli ; Yang, Mingying ; Mao, Chuanbin</creator><creatorcontrib>Wang, Lin ; Qiu, Penghe ; Yang, Tao ; Zhou, Ningyun ; Zhai, Mengmeng ; Li, Yan ; Zhou, Yadong ; Zou, Shengli ; Yang, Mingying ; Mao, Chuanbin</creatorcontrib><description>Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broadened optical absorption through surface plasmon coupling, but their optical bands are still not broad enough to absorb through the solar spectrum and thus are not efficient solar absorbers. Here we discovered first by simulation that 3D structured nanochains of plasmonic nanoparticles presented a remarkably increased optical broadening effect and much longer redshift of the optical peaks due to the enhanced inter-particle coupling effect. Then we fabricated 3D nanochains by assembling gold nanoparticles (AuNPs) around 14 nm ultrathin bionanofibers, the bacterial flagella. The ultrathin biotemplates enabled the 3D arrangement of 50 nm AuNPs along the nanofiber with a very small inter-particle gap, allowing the strong coupling of surface plasmons in a 3D manner. Consistent with the theoretical prediction, the 3D nanochains, when assembled into films, could effectively convert nearly the full spectrum of solar energy into heat, which was further efficiently converted into electricity through a thermoelectric generation unit. Our work represents a nanobiomaterial approach to highly efficient solar thermal power generation.
Ultrathin bionanofibers, bacterial flagella, arrange gold nanoparticles into nanochains with very small inter-particle gaps. The nanochains enhance three-dimensional surface plasmon coupling and convert the full spectrum of solar energy into heat.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d1mh00227a</identifier><identifier>PMID: 34846487</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biomedical materials ; Coupling ; Electromagnetic absorption ; Energy harvesting ; Flagella ; Gold ; Light reflection ; Metal Nanoparticles ; Nanofibers ; Nanomaterials ; Nanoparticles ; Photovoltaic cells ; Plasmonics ; Plasmons ; Red shift ; Solar Energy ; Solar energy absorbers ; Solar heating ; Sunlight ; Surface chemistry ; Thermoelectric power generation</subject><ispartof>Materials horizons, 2021-07, Vol.8 (7), p.297-215</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-16cfcc9cf91c51e97cc927bdeb33ec7998a5a78394cc72dfb1e5413946acec963</citedby><cites>FETCH-LOGICAL-c364t-16cfcc9cf91c51e97cc927bdeb33ec7998a5a78394cc72dfb1e5413946acec963</cites><orcidid>0000-0002-8142-3659 ; 0000000281423659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34846487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1797596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Qiu, Penghe</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Zhou, Ningyun</creatorcontrib><creatorcontrib>Zhai, Mengmeng</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Yadong</creatorcontrib><creatorcontrib>Zou, Shengli</creatorcontrib><creatorcontrib>Yang, Mingying</creatorcontrib><creatorcontrib>Mao, Chuanbin</creatorcontrib><title>3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting</title><title>Materials horizons</title><addtitle>Mater Horiz</addtitle><description>Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broadened optical absorption through surface plasmon coupling, but their optical bands are still not broad enough to absorb through the solar spectrum and thus are not efficient solar absorbers. Here we discovered first by simulation that 3D structured nanochains of plasmonic nanoparticles presented a remarkably increased optical broadening effect and much longer redshift of the optical peaks due to the enhanced inter-particle coupling effect. Then we fabricated 3D nanochains by assembling gold nanoparticles (AuNPs) around 14 nm ultrathin bionanofibers, the bacterial flagella. The ultrathin biotemplates enabled the 3D arrangement of 50 nm AuNPs along the nanofiber with a very small inter-particle gap, allowing the strong coupling of surface plasmons in a 3D manner. Consistent with the theoretical prediction, the 3D nanochains, when assembled into films, could effectively convert nearly the full spectrum of solar energy into heat, which was further efficiently converted into electricity through a thermoelectric generation unit. Our work represents a nanobiomaterial approach to highly efficient solar thermal power generation.
Ultrathin bionanofibers, bacterial flagella, arrange gold nanoparticles into nanochains with very small inter-particle gaps. The nanochains enhance three-dimensional surface plasmon coupling and convert the full spectrum of solar energy into heat.</description><subject>Biomedical materials</subject><subject>Coupling</subject><subject>Electromagnetic absorption</subject><subject>Energy harvesting</subject><subject>Flagella</subject><subject>Gold</subject><subject>Light reflection</subject><subject>Metal Nanoparticles</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Photovoltaic cells</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Red shift</subject><subject>Solar Energy</subject><subject>Solar energy absorbers</subject><subject>Solar heating</subject><subject>Sunlight</subject><subject>Surface chemistry</subject><subject>Thermoelectric power generation</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdksFu1DAQhiNERau2F-4gi14QUsCOnTg-lhYoUhEXOFvOZLJJ5djBdpD2GfrSeHfLInHyjOab3-P5XRQvGX3PKFcfejaPlFaVNM-Ks4rWrGx4XT8_xkKeFpcxPlBKGRc1bemL4pSLVjSilWfFI78lHw0kDJOxZLBmg9YaYiLpfBpJ3Lo0YpqAdJNPOC_WJIzEuJ6sNgWTxsmRuBjAEMngA0E3GgfYk8llzXIxITdbJODXxU5us2-N3podimGzJaMJvzGmXLsoTgZjI14-nefFz8-fftzclfffv3y9ub4vgTcilayBAUDBoBjUDJXMSSW7HjvOEaRSramNbLkSALLqh45hLVhOmzwmqIafF28Ouj5fqyNMCWEE7xxC0kwqWe-htwdoCf7XmgfU8xRhtxyHfo26aqhouaiEzOjVf-iDX4PLT9BVvYMkFTxT7w4UBB9jwEEvYZpN2GpG9c5Kfcu-3e2tvM7w6yfJtZuxP6J_jcvAqwMQIhyr__4C_wMsNKS8</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Lin</creator><creator>Qiu, Penghe</creator><creator>Yang, Tao</creator><creator>Zhou, Ningyun</creator><creator>Zhai, Mengmeng</creator><creator>Li, Yan</creator><creator>Zhou, Yadong</creator><creator>Zou, Shengli</creator><creator>Yang, Mingying</creator><creator>Mao, Chuanbin</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8142-3659</orcidid><orcidid>https://orcid.org/0000000281423659</orcidid></search><sort><creationdate>20210701</creationdate><title>3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting</title><author>Wang, Lin ; Qiu, Penghe ; Yang, Tao ; Zhou, Ningyun ; Zhai, Mengmeng ; Li, Yan ; Zhou, Yadong ; Zou, Shengli ; Yang, Mingying ; Mao, Chuanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-16cfcc9cf91c51e97cc927bdeb33ec7998a5a78394cc72dfb1e5413946acec963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical materials</topic><topic>Coupling</topic><topic>Electromagnetic absorption</topic><topic>Energy harvesting</topic><topic>Flagella</topic><topic>Gold</topic><topic>Light reflection</topic><topic>Metal Nanoparticles</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Photovoltaic cells</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Red shift</topic><topic>Solar Energy</topic><topic>Solar energy absorbers</topic><topic>Solar heating</topic><topic>Sunlight</topic><topic>Surface chemistry</topic><topic>Thermoelectric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Qiu, Penghe</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Zhou, Ningyun</creatorcontrib><creatorcontrib>Zhai, Mengmeng</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Yadong</creatorcontrib><creatorcontrib>Zou, Shengli</creatorcontrib><creatorcontrib>Yang, Mingying</creatorcontrib><creatorcontrib>Mao, Chuanbin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lin</au><au>Qiu, Penghe</au><au>Yang, Tao</au><au>Zhou, Ningyun</au><au>Zhai, Mengmeng</au><au>Li, Yan</au><au>Zhou, Yadong</au><au>Zou, Shengli</au><au>Yang, Mingying</au><au>Mao, Chuanbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting</atitle><jtitle>Materials horizons</jtitle><addtitle>Mater Horiz</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>8</volume><issue>7</issue><spage>297</spage><epage>215</epage><pages>297-215</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broadened optical absorption through surface plasmon coupling, but their optical bands are still not broad enough to absorb through the solar spectrum and thus are not efficient solar absorbers. Here we discovered first by simulation that 3D structured nanochains of plasmonic nanoparticles presented a remarkably increased optical broadening effect and much longer redshift of the optical peaks due to the enhanced inter-particle coupling effect. Then we fabricated 3D nanochains by assembling gold nanoparticles (AuNPs) around 14 nm ultrathin bionanofibers, the bacterial flagella. The ultrathin biotemplates enabled the 3D arrangement of 50 nm AuNPs along the nanofiber with a very small inter-particle gap, allowing the strong coupling of surface plasmons in a 3D manner. Consistent with the theoretical prediction, the 3D nanochains, when assembled into films, could effectively convert nearly the full spectrum of solar energy into heat, which was further efficiently converted into electricity through a thermoelectric generation unit. Our work represents a nanobiomaterial approach to highly efficient solar thermal power generation.
Ultrathin bionanofibers, bacterial flagella, arrange gold nanoparticles into nanochains with very small inter-particle gaps. The nanochains enhance three-dimensional surface plasmon coupling and convert the full spectrum of solar energy into heat.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34846487</pmid><doi>10.1039/d1mh00227a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8142-3659</orcidid><orcidid>https://orcid.org/0000000281423659</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2021-07, Vol.8 (7), p.297-215 |
issn | 2051-6347 2051-6355 |
language | eng |
recordid | cdi_pubmed_primary_34846487 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biomedical materials Coupling Electromagnetic absorption Energy harvesting Flagella Gold Light reflection Metal Nanoparticles Nanofibers Nanomaterials Nanoparticles Photovoltaic cells Plasmonics Plasmons Red shift Solar Energy Solar energy absorbers Solar heating Sunlight Surface chemistry Thermoelectric power generation |
title | 3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Bacterial%20flagella%20as%20both%20synthetic%20biotemplates%20and%20ultrathin%20spacers%20for%20enhanced%20inter-particle%20coupling%20and%20solar%20energy%20harvesting&rft.jtitle=Materials%20horizons&rft.au=Wang,%20Lin&rft.date=2021-07-01&rft.volume=8&rft.issue=7&rft.spage=297&rft.epage=215&rft.pages=297-215&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d1mh00227a&rft_dat=%3Cproquest_pubme%3E2548347043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548347043&rft_id=info:pmid/34846487&rfr_iscdi=true |