3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting

Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2021-07, Vol.8 (7), p.297-215
Hauptverfasser: Wang, Lin, Qiu, Penghe, Yang, Tao, Zhou, Ningyun, Zhai, Mengmeng, Li, Yan, Zhou, Yadong, Zou, Shengli, Yang, Mingying, Mao, Chuanbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 7
container_start_page 297
container_title Materials horizons
container_volume 8
creator Wang, Lin
Qiu, Penghe
Yang, Tao
Zhou, Ningyun
Zhai, Mengmeng
Li, Yan
Zhou, Yadong
Zou, Shengli
Yang, Mingying
Mao, Chuanbin
description Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broadened optical absorption through surface plasmon coupling, but their optical bands are still not broad enough to absorb through the solar spectrum and thus are not efficient solar absorbers. Here we discovered first by simulation that 3D structured nanochains of plasmonic nanoparticles presented a remarkably increased optical broadening effect and much longer redshift of the optical peaks due to the enhanced inter-particle coupling effect. Then we fabricated 3D nanochains by assembling gold nanoparticles (AuNPs) around 14 nm ultrathin bionanofibers, the bacterial flagella. The ultrathin biotemplates enabled the 3D arrangement of 50 nm AuNPs along the nanofiber with a very small inter-particle gap, allowing the strong coupling of surface plasmons in a 3D manner. Consistent with the theoretical prediction, the 3D nanochains, when assembled into films, could effectively convert nearly the full spectrum of solar energy into heat, which was further efficiently converted into electricity through a thermoelectric generation unit. Our work represents a nanobiomaterial approach to highly efficient solar thermal power generation. Ultrathin bionanofibers, bacterial flagella, arrange gold nanoparticles into nanochains with very small inter-particle gaps. The nanochains enhance three-dimensional surface plasmon coupling and convert the full spectrum of solar energy into heat.
doi_str_mv 10.1039/d1mh00227a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34846487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548347043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-16cfcc9cf91c51e97cc927bdeb33ec7998a5a78394cc72dfb1e5413946acec963</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiNERau2F-4gi14QUsCOnTg-lhYoUhEXOFvOZLJJ5djBdpD2GfrSeHfLInHyjOab3-P5XRQvGX3PKFcfejaPlFaVNM-Ks4rWrGx4XT8_xkKeFpcxPlBKGRc1bemL4pSLVjSilWfFI78lHw0kDJOxZLBmg9YaYiLpfBpJ3Lo0YpqAdJNPOC_WJIzEuJ6sNgWTxsmRuBjAEMngA0E3GgfYk8llzXIxITdbJODXxU5us2-N3podimGzJaMJvzGmXLsoTgZjI14-nefFz8-fftzclfffv3y9ub4vgTcilayBAUDBoBjUDJXMSSW7HjvOEaRSramNbLkSALLqh45hLVhOmzwmqIafF28Ouj5fqyNMCWEE7xxC0kwqWe-htwdoCf7XmgfU8xRhtxyHfo26aqhouaiEzOjVf-iDX4PLT9BVvYMkFTxT7w4UBB9jwEEvYZpN2GpG9c5Kfcu-3e2tvM7w6yfJtZuxP6J_jcvAqwMQIhyr__4C_wMsNKS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548347043</pqid></control><display><type>article</type><title>3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Lin ; Qiu, Penghe ; Yang, Tao ; Zhou, Ningyun ; Zhai, Mengmeng ; Li, Yan ; Zhou, Yadong ; Zou, Shengli ; Yang, Mingying ; Mao, Chuanbin</creator><creatorcontrib>Wang, Lin ; Qiu, Penghe ; Yang, Tao ; Zhou, Ningyun ; Zhai, Mengmeng ; Li, Yan ; Zhou, Yadong ; Zou, Shengli ; Yang, Mingying ; Mao, Chuanbin</creatorcontrib><description>Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broadened optical absorption through surface plasmon coupling, but their optical bands are still not broad enough to absorb through the solar spectrum and thus are not efficient solar absorbers. Here we discovered first by simulation that 3D structured nanochains of plasmonic nanoparticles presented a remarkably increased optical broadening effect and much longer redshift of the optical peaks due to the enhanced inter-particle coupling effect. Then we fabricated 3D nanochains by assembling gold nanoparticles (AuNPs) around 14 nm ultrathin bionanofibers, the bacterial flagella. The ultrathin biotemplates enabled the 3D arrangement of 50 nm AuNPs along the nanofiber with a very small inter-particle gap, allowing the strong coupling of surface plasmons in a 3D manner. Consistent with the theoretical prediction, the 3D nanochains, when assembled into films, could effectively convert nearly the full spectrum of solar energy into heat, which was further efficiently converted into electricity through a thermoelectric generation unit. Our work represents a nanobiomaterial approach to highly efficient solar thermal power generation. Ultrathin bionanofibers, bacterial flagella, arrange gold nanoparticles into nanochains with very small inter-particle gaps. The nanochains enhance three-dimensional surface plasmon coupling and convert the full spectrum of solar energy into heat.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d1mh00227a</identifier><identifier>PMID: 34846487</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biomedical materials ; Coupling ; Electromagnetic absorption ; Energy harvesting ; Flagella ; Gold ; Light reflection ; Metal Nanoparticles ; Nanofibers ; Nanomaterials ; Nanoparticles ; Photovoltaic cells ; Plasmonics ; Plasmons ; Red shift ; Solar Energy ; Solar energy absorbers ; Solar heating ; Sunlight ; Surface chemistry ; Thermoelectric power generation</subject><ispartof>Materials horizons, 2021-07, Vol.8 (7), p.297-215</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-16cfcc9cf91c51e97cc927bdeb33ec7998a5a78394cc72dfb1e5413946acec963</citedby><cites>FETCH-LOGICAL-c364t-16cfcc9cf91c51e97cc927bdeb33ec7998a5a78394cc72dfb1e5413946acec963</cites><orcidid>0000-0002-8142-3659 ; 0000000281423659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34846487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1797596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Qiu, Penghe</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Zhou, Ningyun</creatorcontrib><creatorcontrib>Zhai, Mengmeng</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Yadong</creatorcontrib><creatorcontrib>Zou, Shengli</creatorcontrib><creatorcontrib>Yang, Mingying</creatorcontrib><creatorcontrib>Mao, Chuanbin</creatorcontrib><title>3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting</title><title>Materials horizons</title><addtitle>Mater Horiz</addtitle><description>Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broadened optical absorption through surface plasmon coupling, but their optical bands are still not broad enough to absorb through the solar spectrum and thus are not efficient solar absorbers. Here we discovered first by simulation that 3D structured nanochains of plasmonic nanoparticles presented a remarkably increased optical broadening effect and much longer redshift of the optical peaks due to the enhanced inter-particle coupling effect. Then we fabricated 3D nanochains by assembling gold nanoparticles (AuNPs) around 14 nm ultrathin bionanofibers, the bacterial flagella. The ultrathin biotemplates enabled the 3D arrangement of 50 nm AuNPs along the nanofiber with a very small inter-particle gap, allowing the strong coupling of surface plasmons in a 3D manner. Consistent with the theoretical prediction, the 3D nanochains, when assembled into films, could effectively convert nearly the full spectrum of solar energy into heat, which was further efficiently converted into electricity through a thermoelectric generation unit. Our work represents a nanobiomaterial approach to highly efficient solar thermal power generation. Ultrathin bionanofibers, bacterial flagella, arrange gold nanoparticles into nanochains with very small inter-particle gaps. The nanochains enhance three-dimensional surface plasmon coupling and convert the full spectrum of solar energy into heat.</description><subject>Biomedical materials</subject><subject>Coupling</subject><subject>Electromagnetic absorption</subject><subject>Energy harvesting</subject><subject>Flagella</subject><subject>Gold</subject><subject>Light reflection</subject><subject>Metal Nanoparticles</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Photovoltaic cells</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Red shift</subject><subject>Solar Energy</subject><subject>Solar energy absorbers</subject><subject>Solar heating</subject><subject>Sunlight</subject><subject>Surface chemistry</subject><subject>Thermoelectric power generation</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdksFu1DAQhiNERau2F-4gi14QUsCOnTg-lhYoUhEXOFvOZLJJ5djBdpD2GfrSeHfLInHyjOab3-P5XRQvGX3PKFcfejaPlFaVNM-Ks4rWrGx4XT8_xkKeFpcxPlBKGRc1bemL4pSLVjSilWfFI78lHw0kDJOxZLBmg9YaYiLpfBpJ3Lo0YpqAdJNPOC_WJIzEuJ6sNgWTxsmRuBjAEMngA0E3GgfYk8llzXIxITdbJODXxU5us2-N3podimGzJaMJvzGmXLsoTgZjI14-nefFz8-fftzclfffv3y9ub4vgTcilayBAUDBoBjUDJXMSSW7HjvOEaRSramNbLkSALLqh45hLVhOmzwmqIafF28Ouj5fqyNMCWEE7xxC0kwqWe-htwdoCf7XmgfU8xRhtxyHfo26aqhouaiEzOjVf-iDX4PLT9BVvYMkFTxT7w4UBB9jwEEvYZpN2GpG9c5Kfcu-3e2tvM7w6yfJtZuxP6J_jcvAqwMQIhyr__4C_wMsNKS8</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Lin</creator><creator>Qiu, Penghe</creator><creator>Yang, Tao</creator><creator>Zhou, Ningyun</creator><creator>Zhai, Mengmeng</creator><creator>Li, Yan</creator><creator>Zhou, Yadong</creator><creator>Zou, Shengli</creator><creator>Yang, Mingying</creator><creator>Mao, Chuanbin</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8142-3659</orcidid><orcidid>https://orcid.org/0000000281423659</orcidid></search><sort><creationdate>20210701</creationdate><title>3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting</title><author>Wang, Lin ; Qiu, Penghe ; Yang, Tao ; Zhou, Ningyun ; Zhai, Mengmeng ; Li, Yan ; Zhou, Yadong ; Zou, Shengli ; Yang, Mingying ; Mao, Chuanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-16cfcc9cf91c51e97cc927bdeb33ec7998a5a78394cc72dfb1e5413946acec963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical materials</topic><topic>Coupling</topic><topic>Electromagnetic absorption</topic><topic>Energy harvesting</topic><topic>Flagella</topic><topic>Gold</topic><topic>Light reflection</topic><topic>Metal Nanoparticles</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Photovoltaic cells</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Red shift</topic><topic>Solar Energy</topic><topic>Solar energy absorbers</topic><topic>Solar heating</topic><topic>Sunlight</topic><topic>Surface chemistry</topic><topic>Thermoelectric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Qiu, Penghe</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Zhou, Ningyun</creatorcontrib><creatorcontrib>Zhai, Mengmeng</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Zhou, Yadong</creatorcontrib><creatorcontrib>Zou, Shengli</creatorcontrib><creatorcontrib>Yang, Mingying</creatorcontrib><creatorcontrib>Mao, Chuanbin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lin</au><au>Qiu, Penghe</au><au>Yang, Tao</au><au>Zhou, Ningyun</au><au>Zhai, Mengmeng</au><au>Li, Yan</au><au>Zhou, Yadong</au><au>Zou, Shengli</au><au>Yang, Mingying</au><au>Mao, Chuanbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting</atitle><jtitle>Materials horizons</jtitle><addtitle>Mater Horiz</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>8</volume><issue>7</issue><spage>297</spage><epage>215</epage><pages>297-215</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Linear light-absorbing nanomaterials are ideal for film-based solar harvesting applications as they form porous structures that can maximize the absorption and minimize the reflection of the solar light. Conventional 1D nanochains of plasmonic nanoparticle assemblies can achieve significantly broadened optical absorption through surface plasmon coupling, but their optical bands are still not broad enough to absorb through the solar spectrum and thus are not efficient solar absorbers. Here we discovered first by simulation that 3D structured nanochains of plasmonic nanoparticles presented a remarkably increased optical broadening effect and much longer redshift of the optical peaks due to the enhanced inter-particle coupling effect. Then we fabricated 3D nanochains by assembling gold nanoparticles (AuNPs) around 14 nm ultrathin bionanofibers, the bacterial flagella. The ultrathin biotemplates enabled the 3D arrangement of 50 nm AuNPs along the nanofiber with a very small inter-particle gap, allowing the strong coupling of surface plasmons in a 3D manner. Consistent with the theoretical prediction, the 3D nanochains, when assembled into films, could effectively convert nearly the full spectrum of solar energy into heat, which was further efficiently converted into electricity through a thermoelectric generation unit. Our work represents a nanobiomaterial approach to highly efficient solar thermal power generation. Ultrathin bionanofibers, bacterial flagella, arrange gold nanoparticles into nanochains with very small inter-particle gaps. The nanochains enhance three-dimensional surface plasmon coupling and convert the full spectrum of solar energy into heat.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34846487</pmid><doi>10.1039/d1mh00227a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8142-3659</orcidid><orcidid>https://orcid.org/0000000281423659</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2021-07, Vol.8 (7), p.297-215
issn 2051-6347
2051-6355
language eng
recordid cdi_pubmed_primary_34846487
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biomedical materials
Coupling
Electromagnetic absorption
Energy harvesting
Flagella
Gold
Light reflection
Metal Nanoparticles
Nanofibers
Nanomaterials
Nanoparticles
Photovoltaic cells
Plasmonics
Plasmons
Red shift
Solar Energy
Solar energy absorbers
Solar heating
Sunlight
Surface chemistry
Thermoelectric power generation
title 3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Bacterial%20flagella%20as%20both%20synthetic%20biotemplates%20and%20ultrathin%20spacers%20for%20enhanced%20inter-particle%20coupling%20and%20solar%20energy%20harvesting&rft.jtitle=Materials%20horizons&rft.au=Wang,%20Lin&rft.date=2021-07-01&rft.volume=8&rft.issue=7&rft.spage=297&rft.epage=215&rft.pages=297-215&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d1mh00227a&rft_dat=%3Cproquest_pubme%3E2548347043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548347043&rft_id=info:pmid/34846487&rfr_iscdi=true