Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis
Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have...
Gespeichert in:
Veröffentlicht in: | Communications biology 2021-11, Vol.4 (1), p.1337-1337, Article 1337 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1337 |
---|---|
container_issue | 1 |
container_start_page | 1337 |
container_title | Communications biology |
container_volume | 4 |
creator | Higgins, Anna J. Flynn, Alex J. Marconnet, Anaïs Musgrove, Laura J. Postis, Vincent L. G. Lippiat, Jonathan D. Chung, Chun-wa Ceska, Tom Zoonens, Manuela Sobott, Frank Muench, Stephen P. |
description | Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract
Escherichia coli
AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Higgins et al. present a cycloalkane-modified amphiphilic polymer that can provide direct extraction of membrane proteins for Cryo-EM analysis. They show its utility by extracting and solving the structure of AcrB to a high resolution of 3.2 Å by single particle cryo-EM. |
doi_str_mv | 10.1038/s42003-021-02834-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34824357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c131cd75303428686e3487d6389ace3</doaj_id><sourcerecordid>2604013060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-5de5d6a66cb7a117c293ebebd0a4136d6ad3af9c5b3c29e9fa559bded3eb4c653</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpH-CAInEBoYDtcZz4glStCq20iAucLcee7Lok8WJnt-y_x9mUpe0BIcWK5XnmnQ-9WfaSkveUQP0hckYIFITRdGrgBTzJThlIWYDg7Om9-0l2HuMNIYRKKQXw59kJ8JpxKKvTrFvsTed190MPWPTeutahzXW_Wbv0dc7kG9_tewwx3wS_cxZz6wKaMcdfY9BmdH7IfZv32DchaUzUiG6IeetDvgh7f_kl14Pu9tHFF9mzVncRz-_-Z9n3T5ffFlfF8uvn68XFsjBlxceitFhaoYUwTaUprQyTgA02lmhOQaSQBd1KUzaQQihbXZaysWgTxY0o4Sy7nnWt1zdqE1yvw1557dThwYeV0mF0pkNFDQVqbFUCAc5qUQtMy6msgFpqg5C0Ps5am23TozU4pLG7B6IPI4Nbq5XfqVrQipR1Eng7C6wfpV1dLNX0lgqnikB3NLFv7ooF_3OLcVS9iwa7Lm3Wb6NignBCgQiS0NeP0Bu_DWnRB4oBlJzLRLGZMsHHGLA9dkCJmnykZh-p5CN18JGaRn51f-Rjyh_XJODdDNxi49toHA4Gj1hyWsWYACnSjUw91P9PL9yoJ08t_HYYUyrMqTHhwwrD3yH_0f9vtir1RA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602335449</pqid></control><display><type>article</type><title>Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis</title><source>SpringerOpen</source><source>Nature_OA刊</source><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Higgins, Anna J. ; Flynn, Alex J. ; Marconnet, Anaïs ; Musgrove, Laura J. ; Postis, Vincent L. G. ; Lippiat, Jonathan D. ; Chung, Chun-wa ; Ceska, Tom ; Zoonens, Manuela ; Sobott, Frank ; Muench, Stephen P.</creator><creatorcontrib>Higgins, Anna J. ; Flynn, Alex J. ; Marconnet, Anaïs ; Musgrove, Laura J. ; Postis, Vincent L. G. ; Lippiat, Jonathan D. ; Chung, Chun-wa ; Ceska, Tom ; Zoonens, Manuela ; Sobott, Frank ; Muench, Stephen P.</creatorcontrib><description>Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract
Escherichia coli
AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Higgins et al. present a cycloalkane-modified amphiphilic polymer that can provide direct extraction of membrane proteins for Cryo-EM analysis. They show its utility by extracting and solving the structure of AcrB to a high resolution of 3.2 Å by single particle cryo-EM.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-02834-3</identifier><identifier>PMID: 34824357</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject><![CDATA[101/28 ; 101/58 ; 631/535/1258/1259 ; 631/92/314 ; Biology ; Biomedical and Life Sciences ; Cryoelectron Microscopy - instrumentation ; Cryoelectron Microscopy - methods ; Cycloparaffins - chemistry ; Escherichia coli - physiology ; Escherichia coli Proteins - isolation & purification ; Homeostasis ; Life Sciences ; Life Sciences & Biomedicine ; Life Sciences & Biomedicine - Other Topics ; Mass spectroscopy ; Membrane proteins ; Multidisciplinary Sciences ; Multidrug Resistance-Associated Proteins - isolation & purification ; Polymers ; Polymers - chemistry ; Protein purification ; Proteins ; Science & Technology ; Science & Technology - Other Topics ; Structure-function relationships ; Therapeutic targets]]></subject><ispartof>Communications biology, 2021-11, Vol.4 (1), p.1337-1337, Article 1337</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2021, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722639600009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c574t-5de5d6a66cb7a117c293ebebd0a4136d6ad3af9c5b3c29e9fa559bded3eb4c653</citedby><cites>FETCH-LOGICAL-c574t-5de5d6a66cb7a117c293ebebd0a4136d6ad3af9c5b3c29e9fa559bded3eb4c653</cites><orcidid>0000-0001-6869-4414 ; 0000-0002-7200-9528 ; 0000-0003-3748-7345 ; 0000-0003-2648-7868 ; 0000-0001-9029-1865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617058/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617058/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,39267,41129,42198,51585,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34824357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03448731$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Higgins, Anna J.</creatorcontrib><creatorcontrib>Flynn, Alex J.</creatorcontrib><creatorcontrib>Marconnet, Anaïs</creatorcontrib><creatorcontrib>Musgrove, Laura J.</creatorcontrib><creatorcontrib>Postis, Vincent L. G.</creatorcontrib><creatorcontrib>Lippiat, Jonathan D.</creatorcontrib><creatorcontrib>Chung, Chun-wa</creatorcontrib><creatorcontrib>Ceska, Tom</creatorcontrib><creatorcontrib>Zoonens, Manuela</creatorcontrib><creatorcontrib>Sobott, Frank</creatorcontrib><creatorcontrib>Muench, Stephen P.</creatorcontrib><title>Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>COMMUN BIOL</addtitle><addtitle>Commun Biol</addtitle><description>Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract
Escherichia coli
AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Higgins et al. present a cycloalkane-modified amphiphilic polymer that can provide direct extraction of membrane proteins for Cryo-EM analysis. They show its utility by extracting and solving the structure of AcrB to a high resolution of 3.2 Å by single particle cryo-EM.</description><subject>101/28</subject><subject>101/58</subject><subject>631/535/1258/1259</subject><subject>631/92/314</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cryoelectron Microscopy - instrumentation</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Cycloparaffins - chemistry</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - isolation & purification</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Life Sciences & Biomedicine - Other Topics</subject><subject>Mass spectroscopy</subject><subject>Membrane proteins</subject><subject>Multidisciplinary Sciences</subject><subject>Multidrug Resistance-Associated Proteins - isolation & purification</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Protein purification</subject><subject>Proteins</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Structure-function relationships</subject><subject>Therapeutic targets</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEolXpH-CAInEBoYDtcZz4glStCq20iAucLcee7Lok8WJnt-y_x9mUpe0BIcWK5XnmnQ-9WfaSkveUQP0hckYIFITRdGrgBTzJThlIWYDg7Om9-0l2HuMNIYRKKQXw59kJ8JpxKKvTrFvsTed190MPWPTeutahzXW_Wbv0dc7kG9_tewwx3wS_cxZz6wKaMcdfY9BmdH7IfZv32DchaUzUiG6IeetDvgh7f_kl14Pu9tHFF9mzVncRz-_-Z9n3T5ffFlfF8uvn68XFsjBlxceitFhaoYUwTaUprQyTgA02lmhOQaSQBd1KUzaQQihbXZaysWgTxY0o4Sy7nnWt1zdqE1yvw1557dThwYeV0mF0pkNFDQVqbFUCAc5qUQtMy6msgFpqg5C0Ps5am23TozU4pLG7B6IPI4Nbq5XfqVrQipR1Eng7C6wfpV1dLNX0lgqnikB3NLFv7ooF_3OLcVS9iwa7Lm3Wb6NignBCgQiS0NeP0Bu_DWnRB4oBlJzLRLGZMsHHGLA9dkCJmnykZh-p5CN18JGaRn51f-Rjyh_XJODdDNxi49toHA4Gj1hyWsWYACnSjUw91P9PL9yoJ08t_HYYUyrMqTHhwwrD3yH_0f9vtir1RA</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Higgins, Anna J.</creator><creator>Flynn, Alex J.</creator><creator>Marconnet, Anaïs</creator><creator>Musgrove, Laura J.</creator><creator>Postis, Vincent L. G.</creator><creator>Lippiat, Jonathan D.</creator><creator>Chung, Chun-wa</creator><creator>Ceska, Tom</creator><creator>Zoonens, Manuela</creator><creator>Sobott, Frank</creator><creator>Muench, Stephen P.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6869-4414</orcidid><orcidid>https://orcid.org/0000-0002-7200-9528</orcidid><orcidid>https://orcid.org/0000-0003-3748-7345</orcidid><orcidid>https://orcid.org/0000-0003-2648-7868</orcidid><orcidid>https://orcid.org/0000-0001-9029-1865</orcidid></search><sort><creationdate>20211125</creationdate><title>Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis</title><author>Higgins, Anna J. ; Flynn, Alex J. ; Marconnet, Anaïs ; Musgrove, Laura J. ; Postis, Vincent L. G. ; Lippiat, Jonathan D. ; Chung, Chun-wa ; Ceska, Tom ; Zoonens, Manuela ; Sobott, Frank ; Muench, Stephen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-5de5d6a66cb7a117c293ebebd0a4136d6ad3af9c5b3c29e9fa559bded3eb4c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>101/58</topic><topic>631/535/1258/1259</topic><topic>631/92/314</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cryoelectron Microscopy - instrumentation</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Cycloparaffins - chemistry</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - isolation & purification</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Life Sciences & Biomedicine - Other Topics</topic><topic>Mass spectroscopy</topic><topic>Membrane proteins</topic><topic>Multidisciplinary Sciences</topic><topic>Multidrug Resistance-Associated Proteins - isolation & purification</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Protein purification</topic><topic>Proteins</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Structure-function relationships</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higgins, Anna J.</creatorcontrib><creatorcontrib>Flynn, Alex J.</creatorcontrib><creatorcontrib>Marconnet, Anaïs</creatorcontrib><creatorcontrib>Musgrove, Laura J.</creatorcontrib><creatorcontrib>Postis, Vincent L. G.</creatorcontrib><creatorcontrib>Lippiat, Jonathan D.</creatorcontrib><creatorcontrib>Chung, Chun-wa</creatorcontrib><creatorcontrib>Ceska, Tom</creatorcontrib><creatorcontrib>Zoonens, Manuela</creatorcontrib><creatorcontrib>Sobott, Frank</creatorcontrib><creatorcontrib>Muench, Stephen P.</creatorcontrib><collection>SpringerOpen</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Academic</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higgins, Anna J.</au><au>Flynn, Alex J.</au><au>Marconnet, Anaïs</au><au>Musgrove, Laura J.</au><au>Postis, Vincent L. G.</au><au>Lippiat, Jonathan D.</au><au>Chung, Chun-wa</au><au>Ceska, Tom</au><au>Zoonens, Manuela</au><au>Sobott, Frank</au><au>Muench, Stephen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><stitle>COMMUN BIOL</stitle><addtitle>Commun Biol</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>1337</spage><epage>1337</epage><pages>1337-1337</pages><artnum>1337</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract
Escherichia coli
AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Higgins et al. present a cycloalkane-modified amphiphilic polymer that can provide direct extraction of membrane proteins for Cryo-EM analysis. They show its utility by extracting and solving the structure of AcrB to a high resolution of 3.2 Å by single particle cryo-EM.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34824357</pmid><doi>10.1038/s42003-021-02834-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6869-4414</orcidid><orcidid>https://orcid.org/0000-0002-7200-9528</orcidid><orcidid>https://orcid.org/0000-0003-3748-7345</orcidid><orcidid>https://orcid.org/0000-0003-2648-7868</orcidid><orcidid>https://orcid.org/0000-0001-9029-1865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2021-11, Vol.4 (1), p.1337-1337, Article 1337 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_pubmed_primary_34824357 |
source | SpringerOpen; Nature_OA刊; MEDLINE; NCBI_PubMed Central(免费); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | 101/28 101/58 631/535/1258/1259 631/92/314 Biology Biomedical and Life Sciences Cryoelectron Microscopy - instrumentation Cryoelectron Microscopy - methods Cycloparaffins - chemistry Escherichia coli - physiology Escherichia coli Proteins - isolation & purification Homeostasis Life Sciences Life Sciences & Biomedicine Life Sciences & Biomedicine - Other Topics Mass spectroscopy Membrane proteins Multidisciplinary Sciences Multidrug Resistance-Associated Proteins - isolation & purification Polymers Polymers - chemistry Protein purification Proteins Science & Technology Science & Technology - Other Topics Structure-function relationships Therapeutic targets |
title | Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T15%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycloalkane-modified%20amphiphilic%20polymers%20provide%20direct%20extraction%20of%20membrane%20proteins%20for%20CryoEM%20analysis&rft.jtitle=Communications%20biology&rft.au=Higgins,%20Anna%20J.&rft.date=2021-11-25&rft.volume=4&rft.issue=1&rft.spage=1337&rft.epage=1337&rft.pages=1337-1337&rft.artnum=1337&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-02834-3&rft_dat=%3Cproquest_pubme%3E2604013060%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602335449&rft_id=info:pmid/34824357&rft_doaj_id=oai_doaj_org_article_1c131cd75303428686e3487d6389ace3&rfr_iscdi=true |