Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis

Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-11, Vol.4 (1), p.1337-1337, Article 1337
Hauptverfasser: Higgins, Anna J., Flynn, Alex J., Marconnet, Anaïs, Musgrove, Laura J., Postis, Vincent L. G., Lippiat, Jonathan D., Chung, Chun-wa, Ceska, Tom, Zoonens, Manuela, Sobott, Frank, Muench, Stephen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract Escherichia coli AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM. Higgins et al. present a cycloalkane-modified amphiphilic polymer that can provide direct extraction of membrane proteins for Cryo-EM analysis. They show its utility by extracting and solving the structure of AcrB to a high resolution of 3.2 Å by single particle cryo-EM.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02834-3