Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis
Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have...
Gespeichert in:
Veröffentlicht in: | Communications biology 2021-11, Vol.4 (1), p.1337-1337, Article 1337 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract
Escherichia coli
AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Higgins et al. present a cycloalkane-modified amphiphilic polymer that can provide direct extraction of membrane proteins for Cryo-EM analysis. They show its utility by extracting and solving the structure of AcrB to a high resolution of 3.2 Å by single particle cryo-EM. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-021-02834-3 |