DPP promotes odontogenic differentiation of DPSCs through NF-κB signaling
Dentin phosphophoryn synthesized and processed predominantly by the odontoblasts, functions as both structural and signaling protein. Mechanistic studies revealed that DPP stimulation of DPSCs positively impacted the differentiation of DPSCs into functional odontoblasts. Results show that NF-κB sign...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-11, Vol.11 (1), p.22076-22076, Article 22076 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dentin phosphophoryn synthesized and processed predominantly by the odontoblasts, functions as both structural and signaling protein. Mechanistic studies revealed that DPP stimulation of DPSCs positively impacted the differentiation of DPSCs into functional odontoblasts. Results show that NF-κB signaling and transcriptional activation of genes involved in odontoblast differentiation were influenced by DPP signaling. Specifically, RelA/p65 subunit of NF-κB was identified as being responsible for the initiation of the differentiation cascade. Confocal imaging demonstrated the nuclear translocation of p65 with DPP stimulation. Moreover, direct binding of nuclear NF-κB p65 subunit to the promoter elements of Runx2, Osx, OCN, MMP1, MMP3, BMP4 and PTX3 were identified by ChIP analysis. Pharmacological inhibition of the NF-κB pathway using TPCA-1, a selective inhibitor of IKK-2 and JSH-23, an inhibitor that prevents nuclear translocation and DNA binding of p65 showed impairment in the differentiation process. Functional studies using Alizarin-Red staining showed robust mineral deposits with DPP stimulation and sparse deposition with defective odontoblast differentiation in the presence of inhibitors. In vivo expression of NF-κB targets such as OSX, OCN, PTX3 and p65 in odontoblasts and dental pulp cells from DSPP null mouse was lower when compared with the wild-type. Overall, the results suggest an important role for DPP-mediated NF-κB activation in the transcriptional regulation of early odontogenic markers that promote differentiation of DPSCs. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-01359-3 |