Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface
Brain-machine interfaces (BMIs) have the potential to augment human functions and restore independence in people with disabilities, yet a compromise between non-invasiveness and performance limits their relevance. Here, we hypothesized that a non-invasive neuromuscular-machine interface providing re...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2021-12, Vol.18 (6), p.66019 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 66019 |
container_title | Journal of neural engineering |
container_volume | 18 |
creator | Formento, Emanuele Botros, Paul Carmena, Jose M |
description | Brain-machine interfaces (BMIs) have the potential to augment human functions and restore independence in people with disabilities, yet a compromise between non-invasiveness and performance limits their relevance.
Here, we hypothesized that a non-invasive neuromuscular-machine interface providing real-time neurofeedback of individual motor units within a muscle could enable independent motor unit control to an extent suitable for high-performance BMI applications.
Over 6 days of training, eight participants progressively learned to skillfully and independently control three biceps brachii motor units to complete a 2D center-out task. We show that neurofeedback enabled motor unit activity that largely violated recruitment constraints observed during ramp-and-hold isometric contractions thought to limit individual motor unit controllability. Finally, participants demonstrated the suitability of individual motor units for powering general applications through a spelling task.
These results illustrate the flexibility of the sensorimotor system and highlight individual motor units as a promising source of control for BMI applications. |
doi_str_mv | 10.1088/1741-2552/ac35ac |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34727532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593033358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-d28ba8aaeeb3115d2b19f1cbc5a6226db5c2af5f94eadb8f2c3a2260e98f3b143</originalsourceid><addsrcrecordid>eNp1kMtO3DAUhq2KqlDaPSvkHV00xZc4kyzRiF4kpC6ga-vEPlY9JHaw45HY8Q59wz5JMxo6K9jY1q_v_Ef-CDnj7AtnbXvJVzWvhFLiEoxUYN6Qk0N0dHg37Ji8z3nDmOSrjr0jx7JeiZWS4oRsbu_9MKClPliccDnCTE0Mc4oDjW4X-623BQY6xjkmWoKfM916oEBDDJUPW8h-izRgSXEs2ZQB0t-nPyOY3z7g0jBjcmDwA3nrYMj48fk-Jb--Xt-tv1c3P7_9WF_dVKbmbK6saHtoARB7ybmyoued46Y3ChohGtsrI8Ap19UItm-dMBKWnGHXOtnzWp6ST_veKcWHgnnWo88GhwECxpK1UJ1kUkrVLijboybFnBM6PSU_QnrUnOmdYb1TqHc69d7wMnL-3F76Ee1h4L_SBbjYAz5OehNLCstn9Sag5q1uNGsaxjs9WbeQn18gX938D7G_ln8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593033358</pqid></control><display><type>article</type><title>Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Formento, Emanuele ; Botros, Paul ; Carmena, Jose M</creator><creatorcontrib>Formento, Emanuele ; Botros, Paul ; Carmena, Jose M</creatorcontrib><description>Brain-machine interfaces (BMIs) have the potential to augment human functions and restore independence in people with disabilities, yet a compromise between non-invasiveness and performance limits their relevance.
Here, we hypothesized that a non-invasive neuromuscular-machine interface providing real-time neurofeedback of individual motor units within a muscle could enable independent motor unit control to an extent suitable for high-performance BMI applications.
Over 6 days of training, eight participants progressively learned to skillfully and independently control three biceps brachii motor units to complete a 2D center-out task. We show that neurofeedback enabled motor unit activity that largely violated recruitment constraints observed during ramp-and-hold isometric contractions thought to limit individual motor unit controllability. Finally, participants demonstrated the suitability of individual motor units for powering general applications through a spelling task.
These results illustrate the flexibility of the sensorimotor system and highlight individual motor units as a promising source of control for BMI applications.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ac35ac</identifier><identifier>PMID: 34727532</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Arm - physiology ; Brain-Computer Interfaces ; brain–machine interfaces ; Humans ; Isometric Contraction - physiology ; motor control ; Motor Neurons - physiology ; motor units ; Muscle, Skeletal - physiology ; neurofeedback ; surface electromyography</subject><ispartof>Journal of neural engineering, 2021-12, Vol.18 (6), p.66019</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-d28ba8aaeeb3115d2b19f1cbc5a6226db5c2af5f94eadb8f2c3a2260e98f3b143</citedby><cites>FETCH-LOGICAL-c410t-d28ba8aaeeb3115d2b19f1cbc5a6226db5c2af5f94eadb8f2c3a2260e98f3b143</cites><orcidid>0000-0002-4797-1651 ; 0000-0002-7870-2710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ac35ac/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34727532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Formento, Emanuele</creatorcontrib><creatorcontrib>Botros, Paul</creatorcontrib><creatorcontrib>Carmena, Jose M</creatorcontrib><title>Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Brain-machine interfaces (BMIs) have the potential to augment human functions and restore independence in people with disabilities, yet a compromise between non-invasiveness and performance limits their relevance.
Here, we hypothesized that a non-invasive neuromuscular-machine interface providing real-time neurofeedback of individual motor units within a muscle could enable independent motor unit control to an extent suitable for high-performance BMI applications.
Over 6 days of training, eight participants progressively learned to skillfully and independently control three biceps brachii motor units to complete a 2D center-out task. We show that neurofeedback enabled motor unit activity that largely violated recruitment constraints observed during ramp-and-hold isometric contractions thought to limit individual motor unit controllability. Finally, participants demonstrated the suitability of individual motor units for powering general applications through a spelling task.
These results illustrate the flexibility of the sensorimotor system and highlight individual motor units as a promising source of control for BMI applications.</description><subject>Arm - physiology</subject><subject>Brain-Computer Interfaces</subject><subject>brain–machine interfaces</subject><subject>Humans</subject><subject>Isometric Contraction - physiology</subject><subject>motor control</subject><subject>Motor Neurons - physiology</subject><subject>motor units</subject><subject>Muscle, Skeletal - physiology</subject><subject>neurofeedback</subject><subject>surface electromyography</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kMtO3DAUhq2KqlDaPSvkHV00xZc4kyzRiF4kpC6ga-vEPlY9JHaw45HY8Q59wz5JMxo6K9jY1q_v_Ef-CDnj7AtnbXvJVzWvhFLiEoxUYN6Qk0N0dHg37Ji8z3nDmOSrjr0jx7JeiZWS4oRsbu_9MKClPliccDnCTE0Mc4oDjW4X-623BQY6xjkmWoKfM916oEBDDJUPW8h-izRgSXEs2ZQB0t-nPyOY3z7g0jBjcmDwA3nrYMj48fk-Jb--Xt-tv1c3P7_9WF_dVKbmbK6saHtoARB7ybmyoued46Y3ChohGtsrI8Ap19UItm-dMBKWnGHXOtnzWp6ST_veKcWHgnnWo88GhwECxpK1UJ1kUkrVLijboybFnBM6PSU_QnrUnOmdYb1TqHc69d7wMnL-3F76Ee1h4L_SBbjYAz5OehNLCstn9Sag5q1uNGsaxjs9WbeQn18gX938D7G_ln8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Formento, Emanuele</creator><creator>Botros, Paul</creator><creator>Carmena, Jose M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4797-1651</orcidid><orcidid>https://orcid.org/0000-0002-7870-2710</orcidid></search><sort><creationdate>20211201</creationdate><title>Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface</title><author>Formento, Emanuele ; Botros, Paul ; Carmena, Jose M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-d28ba8aaeeb3115d2b19f1cbc5a6226db5c2af5f94eadb8f2c3a2260e98f3b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arm - physiology</topic><topic>Brain-Computer Interfaces</topic><topic>brain–machine interfaces</topic><topic>Humans</topic><topic>Isometric Contraction - physiology</topic><topic>motor control</topic><topic>Motor Neurons - physiology</topic><topic>motor units</topic><topic>Muscle, Skeletal - physiology</topic><topic>neurofeedback</topic><topic>surface electromyography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Formento, Emanuele</creatorcontrib><creatorcontrib>Botros, Paul</creatorcontrib><creatorcontrib>Carmena, Jose M</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Formento, Emanuele</au><au>Botros, Paul</au><au>Carmena, Jose M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>66019</spage><pages>66019-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Brain-machine interfaces (BMIs) have the potential to augment human functions and restore independence in people with disabilities, yet a compromise between non-invasiveness and performance limits their relevance.
Here, we hypothesized that a non-invasive neuromuscular-machine interface providing real-time neurofeedback of individual motor units within a muscle could enable independent motor unit control to an extent suitable for high-performance BMI applications.
Over 6 days of training, eight participants progressively learned to skillfully and independently control three biceps brachii motor units to complete a 2D center-out task. We show that neurofeedback enabled motor unit activity that largely violated recruitment constraints observed during ramp-and-hold isometric contractions thought to limit individual motor unit controllability. Finally, participants demonstrated the suitability of individual motor units for powering general applications through a spelling task.
These results illustrate the flexibility of the sensorimotor system and highlight individual motor units as a promising source of control for BMI applications.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>34727532</pmid><doi>10.1088/1741-2552/ac35ac</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4797-1651</orcidid><orcidid>https://orcid.org/0000-0002-7870-2710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2021-12, Vol.18 (6), p.66019 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_pubmed_primary_34727532 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Arm - physiology Brain-Computer Interfaces brain–machine interfaces Humans Isometric Contraction - physiology motor control Motor Neurons - physiology motor units Muscle, Skeletal - physiology neurofeedback surface electromyography |
title | Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skilled%20independent%20control%20of%20individual%20motor%20units%20via%20a%20non-invasive%20neuromuscular%E2%80%93machine%20interface&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Formento,%20Emanuele&rft.date=2021-12-01&rft.volume=18&rft.issue=6&rft.spage=66019&rft.pages=66019-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/ac35ac&rft_dat=%3Cproquest_pubme%3E2593033358%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593033358&rft_id=info:pmid/34727532&rfr_iscdi=true |