Vascular K-ATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides

Vascular tone is dependent on smooth muscle K-ATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantu syndrome. Unique among K-ATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (44), Article 2109441118
Hauptverfasser: Sung, Min Woo, Yang, Zhongying, Driggers, Camden M., Patton, Bruce L., Mostofian, Barmak, Russo, John D., Zuckerman, Daniel M., Shyng, Show-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vascular tone is dependent on smooth muscle K-ATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantu syndrome. Unique among K-ATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined cryogenic electron microscopy structures of vascular K-ATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic K-ATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational "propeller" and "quatrefoil" geometries surrounding their Kir6.1 core. The glutamate/aspartate-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. Molecular dynamics simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B, and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated, and MgADP-bound activated conformations wherein the glutamate/aspartate-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward K-ATP channel activation.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2109441118