Arabidopsis bioinformatics: tools and strategies

Summary The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other ‘‐omic’ data. In this r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2021-12, Vol.108 (6), p.1585-1596
Hauptverfasser: Cantó‐Pastor, Alex, Mason, G. Alex, Brady, Siobhan M., Provart, Nicholas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1596
container_issue 6
container_start_page 1585
container_title The Plant journal : for cell and molecular biology
container_volume 108
creator Cantó‐Pastor, Alex
Mason, G. Alex
Brady, Siobhan M.
Provart, Nicholas J.
description Summary The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other ‘‐omic’ data. In this review, we cover some more recent tools (and highlight the ‘classics’) for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co‐expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein–protein and protein–DNA interactions. We will touch on tools that integrate different data sets at the end of the article. Significance Statement Bioinformatic tools have become an essential part of a researcher’s toolbox. We review how dozens of such tools can be used for hypothesis generation in Arabidopsis research.
doi_str_mv 10.1111/tpj.15547
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34695270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611184811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3887-eefd56b6b7bb34181136643169d41302014f48423b474b1cbe42519a7e0cee393</originalsourceid><addsrcrecordid>eNqNkE1LI0EQhhtx0Zjdg39AAl4UGdM9Xf0x3kJYdSWgBxf21kzP1EiHyXTsnkH899sx0YMgWJeqw1NVLw8hx4xeslTTfr28ZEKA2iMjxqXIOOP_9smIFpJmClh-SI5iXFLKFJdwQA45yELkio4InYXSutqvo4sT67zrGh9WZe-qeDXpvW_jpOzqSexD2eOTw_iT_GjKNuKvXR-Tv9e_H-e32eL-5s98tsgqrrXKEJtaSCutspYD0yzlksCZLGpgnOaUQQMacm5BgWWVRcgFK0qFtELkBR-Ts-3ddfDPA8berFyssG3LDv0QTS60BCi4gISefkKXfghdSmdymfxo2Lwfk_MtVQUfY8DGrINbleHVMGo2Gk3SaN40JvZkd3GwK6w_yHdvCbjYAi9ofRMrh12FHxilVDFRaK7TRDev9ffpueuTft_N_dD1aXW6W3Utvn4d2Tw-3G2z_wdugZpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611184811</pqid></control><display><type>article</type><title>Arabidopsis bioinformatics: tools and strategies</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Cantó‐Pastor, Alex ; Mason, G. Alex ; Brady, Siobhan M. ; Provart, Nicholas J.</creator><creatorcontrib>Cantó‐Pastor, Alex ; Mason, G. Alex ; Brady, Siobhan M. ; Provart, Nicholas J.</creatorcontrib><description>Summary The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other ‘‐omic’ data. In this review, we cover some more recent tools (and highlight the ‘classics’) for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co‐expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein–protein and protein–DNA interactions. We will touch on tools that integrate different data sets at the end of the article. Significance Statement Bioinformatic tools have become an essential part of a researcher’s toolbox. We review how dozens of such tools can be used for hypothesis generation in Arabidopsis research.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.15547</identifier><identifier>PMID: 34695270</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Bioinformatics ; Computational Biology - methods ; co‐expression ; Databases, Genetic ; Deoxyribonucleic acid ; DNA ; Epigenomics - methods ; functional genomics ; Gene expression ; Gene Expression Profiling ; Gene Ontology ; Genomics ; hypothesis generation ; Life Sciences &amp; Biomedicine ; Plant Sciences ; Promoter Regions, Genetic ; Protein Interaction Maps - physiology ; Proteins ; protein–protein interactions ; Proteomics ; Science &amp; Technology ; Transcriptomics</subject><ispartof>The Plant journal : for cell and molecular biology, 2021-12, Vol.108 (6), p.1585-1596</ispartof><rights>2021 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000715983800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3887-eefd56b6b7bb34181136643169d41302014f48423b474b1cbe42519a7e0cee393</citedby><cites>FETCH-LOGICAL-c3887-eefd56b6b7bb34181136643169d41302014f48423b474b1cbe42519a7e0cee393</cites><orcidid>0000-0001-9424-8055 ; 0000-0001-5551-7232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.15547$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.15547$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27929,27930,39263,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34695270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cantó‐Pastor, Alex</creatorcontrib><creatorcontrib>Mason, G. Alex</creatorcontrib><creatorcontrib>Brady, Siobhan M.</creatorcontrib><creatorcontrib>Provart, Nicholas J.</creatorcontrib><title>Arabidopsis bioinformatics: tools and strategies</title><title>The Plant journal : for cell and molecular biology</title><addtitle>PLANT J</addtitle><addtitle>Plant J</addtitle><description>Summary The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other ‘‐omic’ data. In this review, we cover some more recent tools (and highlight the ‘classics’) for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co‐expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein–protein and protein–DNA interactions. We will touch on tools that integrate different data sets at the end of the article. Significance Statement Bioinformatic tools have become an essential part of a researcher’s toolbox. We review how dozens of such tools can be used for hypothesis generation in Arabidopsis research.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>co‐expression</subject><subject>Databases, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Epigenomics - methods</subject><subject>functional genomics</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Ontology</subject><subject>Genomics</subject><subject>hypothesis generation</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Plant Sciences</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Interaction Maps - physiology</subject><subject>Proteins</subject><subject>protein–protein interactions</subject><subject>Proteomics</subject><subject>Science &amp; Technology</subject><subject>Transcriptomics</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE1LI0EQhhtx0Zjdg39AAl4UGdM9Xf0x3kJYdSWgBxf21kzP1EiHyXTsnkH899sx0YMgWJeqw1NVLw8hx4xeslTTfr28ZEKA2iMjxqXIOOP_9smIFpJmClh-SI5iXFLKFJdwQA45yELkio4InYXSutqvo4sT67zrGh9WZe-qeDXpvW_jpOzqSexD2eOTw_iT_GjKNuKvXR-Tv9e_H-e32eL-5s98tsgqrrXKEJtaSCutspYD0yzlksCZLGpgnOaUQQMacm5BgWWVRcgFK0qFtELkBR-Ts-3ddfDPA8berFyssG3LDv0QTS60BCi4gISefkKXfghdSmdymfxo2Lwfk_MtVQUfY8DGrINbleHVMGo2Gk3SaN40JvZkd3GwK6w_yHdvCbjYAi9ofRMrh12FHxilVDFRaK7TRDev9ffpueuTft_N_dD1aXW6W3Utvn4d2Tw-3G2z_wdugZpc</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Cantó‐Pastor, Alex</creator><creator>Mason, G. Alex</creator><creator>Brady, Siobhan M.</creator><creator>Provart, Nicholas J.</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9424-8055</orcidid><orcidid>https://orcid.org/0000-0001-5551-7232</orcidid></search><sort><creationdate>202112</creationdate><title>Arabidopsis bioinformatics: tools and strategies</title><author>Cantó‐Pastor, Alex ; Mason, G. Alex ; Brady, Siobhan M. ; Provart, Nicholas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3887-eefd56b6b7bb34181136643169d41302014f48423b474b1cbe42519a7e0cee393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>co‐expression</topic><topic>Databases, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Epigenomics - methods</topic><topic>functional genomics</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Ontology</topic><topic>Genomics</topic><topic>hypothesis generation</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Plant Sciences</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Interaction Maps - physiology</topic><topic>Proteins</topic><topic>protein–protein interactions</topic><topic>Proteomics</topic><topic>Science &amp; Technology</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantó‐Pastor, Alex</creatorcontrib><creatorcontrib>Mason, G. Alex</creatorcontrib><creatorcontrib>Brady, Siobhan M.</creatorcontrib><creatorcontrib>Provart, Nicholas J.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cantó‐Pastor, Alex</au><au>Mason, G. Alex</au><au>Brady, Siobhan M.</au><au>Provart, Nicholas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis bioinformatics: tools and strategies</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><stitle>PLANT J</stitle><addtitle>Plant J</addtitle><date>2021-12</date><risdate>2021</risdate><volume>108</volume><issue>6</issue><spage>1585</spage><epage>1596</epage><pages>1585-1596</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other ‘‐omic’ data. In this review, we cover some more recent tools (and highlight the ‘classics’) for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co‐expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein–protein and protein–DNA interactions. We will touch on tools that integrate different data sets at the end of the article. Significance Statement Bioinformatic tools have become an essential part of a researcher’s toolbox. We review how dozens of such tools can be used for hypothesis generation in Arabidopsis research.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>34695270</pmid><doi>10.1111/tpj.15547</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9424-8055</orcidid><orcidid>https://orcid.org/0000-0001-5551-7232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2021-12, Vol.108 (6), p.1585-1596
issn 0960-7412
1365-313X
language eng
recordid cdi_pubmed_primary_34695270
source MEDLINE; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Bioinformatics
Computational Biology - methods
co‐expression
Databases, Genetic
Deoxyribonucleic acid
DNA
Epigenomics - methods
functional genomics
Gene expression
Gene Expression Profiling
Gene Ontology
Genomics
hypothesis generation
Life Sciences & Biomedicine
Plant Sciences
Promoter Regions, Genetic
Protein Interaction Maps - physiology
Proteins
protein–protein interactions
Proteomics
Science & Technology
Transcriptomics
title Arabidopsis bioinformatics: tools and strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20bioinformatics:%20tools%20and%20strategies&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Cant%C3%B3%E2%80%90Pastor,%20Alex&rft.date=2021-12&rft.volume=108&rft.issue=6&rft.spage=1585&rft.epage=1596&rft.pages=1585-1596&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.15547&rft_dat=%3Cproquest_pubme%3E2611184811%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611184811&rft_id=info:pmid/34695270&rfr_iscdi=true