Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction

Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2022-05, Vol.19 (3), p.1344-1353
Hauptverfasser: Adnan, Nahim, Zand, Maryam, Huang, Tim H. M., Ruan, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1353
container_issue 3
container_start_page 1344
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 19
creator Adnan, Nahim
Zand, Maryam
Huang, Tim H. M.
Ruan, Jianhua
description Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains.
doi_str_mv 10.1109/TCBB.2021.3120673
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_34662279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9578929</ieee_id><sourcerecordid>2672805765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-8d68ed127d44da6f82da1d7218bb68e5d006ce0a1f9e4e1a23b90f71394fa703</originalsourceid><addsrcrecordid>eNpdkVtr3DAQhUVIaS7tDwiBYshLXrzV_fISyJq0DSS0lH0XsjVuHbzSVrID_ffVZrdLWhjQiPPNYYaD0AXBC0Kw-bhqlssFxZQsGKFYKnaETokQqjZG8uNtz0UtjGQn6CznJ4wpN5i_RSeMS0mpMqeoa2LIU5q7aYihcsFXd89unN3LN_bV99jOearuwwRpk2DaCY_Rw5irPqZqmcAVoHGhg1Q9FiKXGnL1LYEfXmzfoTe9GzO837_naPXpbtV8qR--fr5vbh_qjnM11dpLDZ5Q5Tn3Tvaaeke8okS3bVGEx1h2gB3pDXAgjrLW4F4RZnjvFGbn6GZnu5nbNfgOwpTcaDdpWLv020Y32H-VMPy0P-KzNVRwxmgxuN4bpPhrhjzZ9ZA7GEcXIM7ZUqEZ51oTU9Cr_9CnOKdQrrNUKqqxUFIUiuyoLsWcE_SHZQi22wTtNkG7TdDuEywzH15fcZj4G1kBLnfAAAAH2QilDTXsD8IeoY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672805765</pqid></control><display><type>article</type><title>Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Adnan, Nahim ; Zand, Maryam ; Huang, Tim H. M. ; Ruan, Jianhua</creator><creatorcontrib>Adnan, Nahim ; Zand, Maryam ; Huang, Tim H. M. ; Ruan, Jianhua</creatorcontrib><description>Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2021.3120673</identifier><identifier>PMID: 34662279</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biological system modeling ; Breast cancer ; Breast Neoplasms - genetics ; Cancer ; Cancer metastasis ; Classifiers ; Computational modeling ; Decision making ; Domains ; End users ; Evaluation ; feature engineering ; Female ; Humans ; interpretable machine learning ; Learning algorithms ; Machine Learning ; Medical prognosis ; Melanoma ; Melanoma, Cutaneous Malignant ; Metastases ; Metastasis ; performance evaluation ; Perturbation methods ; Prediction algorithms ; Prediction models ; Predictive models ; Skin Neoplasms ; Transcriptomics</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2022-05, Vol.19 (3), p.1344-1353</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-8d68ed127d44da6f82da1d7218bb68e5d006ce0a1f9e4e1a23b90f71394fa703</citedby><cites>FETCH-LOGICAL-c447t-8d68ed127d44da6f82da1d7218bb68e5d006ce0a1f9e4e1a23b90f71394fa703</cites><orcidid>0000-0002-5622-3137 ; 0000-0003-3277-1662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9578929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9578929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34662279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adnan, Nahim</creatorcontrib><creatorcontrib>Zand, Maryam</creatorcontrib><creatorcontrib>Huang, Tim H. M.</creatorcontrib><creatorcontrib>Ruan, Jianhua</creatorcontrib><title>Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains.</description><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Cancer</subject><subject>Cancer metastasis</subject><subject>Classifiers</subject><subject>Computational modeling</subject><subject>Decision making</subject><subject>Domains</subject><subject>End users</subject><subject>Evaluation</subject><subject>feature engineering</subject><subject>Female</subject><subject>Humans</subject><subject>interpretable machine learning</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Melanoma, Cutaneous Malignant</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>performance evaluation</subject><subject>Perturbation methods</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Skin Neoplasms</subject><subject>Transcriptomics</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkVtr3DAQhUVIaS7tDwiBYshLXrzV_fISyJq0DSS0lH0XsjVuHbzSVrID_ffVZrdLWhjQiPPNYYaD0AXBC0Kw-bhqlssFxZQsGKFYKnaETokQqjZG8uNtz0UtjGQn6CznJ4wpN5i_RSeMS0mpMqeoa2LIU5q7aYihcsFXd89unN3LN_bV99jOearuwwRpk2DaCY_Rw5irPqZqmcAVoHGhg1Q9FiKXGnL1LYEfXmzfoTe9GzO837_naPXpbtV8qR--fr5vbh_qjnM11dpLDZ5Q5Tn3Tvaaeke8okS3bVGEx1h2gB3pDXAgjrLW4F4RZnjvFGbn6GZnu5nbNfgOwpTcaDdpWLv020Y32H-VMPy0P-KzNVRwxmgxuN4bpPhrhjzZ9ZA7GEcXIM7ZUqEZ51oTU9Cr_9CnOKdQrrNUKqqxUFIUiuyoLsWcE_SHZQi22wTtNkG7TdDuEywzH15fcZj4G1kBLnfAAAAH2QilDTXsD8IeoY4</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Adnan, Nahim</creator><creator>Zand, Maryam</creator><creator>Huang, Tim H. M.</creator><creator>Ruan, Jianhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5622-3137</orcidid><orcidid>https://orcid.org/0000-0003-3277-1662</orcidid></search><sort><creationdate>20220501</creationdate><title>Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction</title><author>Adnan, Nahim ; Zand, Maryam ; Huang, Tim H. M. ; Ruan, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-8d68ed127d44da6f82da1d7218bb68e5d006ce0a1f9e4e1a23b90f71394fa703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Cancer</topic><topic>Cancer metastasis</topic><topic>Classifiers</topic><topic>Computational modeling</topic><topic>Decision making</topic><topic>Domains</topic><topic>End users</topic><topic>Evaluation</topic><topic>feature engineering</topic><topic>Female</topic><topic>Humans</topic><topic>interpretable machine learning</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Melanoma, Cutaneous Malignant</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>performance evaluation</topic><topic>Perturbation methods</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Skin Neoplasms</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adnan, Nahim</creatorcontrib><creatorcontrib>Zand, Maryam</creatorcontrib><creatorcontrib>Huang, Tim H. M.</creatorcontrib><creatorcontrib>Ruan, Jianhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adnan, Nahim</au><au>Zand, Maryam</au><au>Huang, Tim H. M.</au><au>Ruan, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><spage>1344</spage><epage>1353</epage><pages>1344-1353</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34662279</pmid><doi>10.1109/TCBB.2021.3120673</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5622-3137</orcidid><orcidid>https://orcid.org/0000-0003-3277-1662</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2022-05, Vol.19 (3), p.1344-1353
issn 1545-5963
1557-9964
language eng
recordid cdi_pubmed_primary_34662279
source IEEE Electronic Library (IEL)
subjects Algorithms
Biological system modeling
Breast cancer
Breast Neoplasms - genetics
Cancer
Cancer metastasis
Classifiers
Computational modeling
Decision making
Domains
End users
Evaluation
feature engineering
Female
Humans
interpretable machine learning
Learning algorithms
Machine Learning
Medical prognosis
Melanoma
Melanoma, Cutaneous Malignant
Metastases
Metastasis
performance evaluation
Perturbation methods
Prediction algorithms
Prediction models
Predictive models
Skin Neoplasms
Transcriptomics
title Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20and%20Evaluation%20of%20Robust%20Interpretation%20Models%20for%20Breast%20Cancer%20Metastasis%20Prediction&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Adnan,%20Nahim&rft.date=2022-05-01&rft.volume=19&rft.issue=3&rft.spage=1344&rft.epage=1353&rft.pages=1344-1353&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2021.3120673&rft_dat=%3Cproquest_RIE%3E2672805765%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672805765&rft_id=info:pmid/34662279&rft_ieee_id=9578929&rfr_iscdi=true