Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction
Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2022-05, Vol.19 (3), p.1344-1353 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1353 |
---|---|
container_issue | 3 |
container_start_page | 1344 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 19 |
creator | Adnan, Nahim Zand, Maryam Huang, Tim H. M. Ruan, Jianhua |
description | Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains. |
doi_str_mv | 10.1109/TCBB.2021.3120673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_34662279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9578929</ieee_id><sourcerecordid>2672805765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-8d68ed127d44da6f82da1d7218bb68e5d006ce0a1f9e4e1a23b90f71394fa703</originalsourceid><addsrcrecordid>eNpdkVtr3DAQhUVIaS7tDwiBYshLXrzV_fISyJq0DSS0lH0XsjVuHbzSVrID_ffVZrdLWhjQiPPNYYaD0AXBC0Kw-bhqlssFxZQsGKFYKnaETokQqjZG8uNtz0UtjGQn6CznJ4wpN5i_RSeMS0mpMqeoa2LIU5q7aYihcsFXd89unN3LN_bV99jOearuwwRpk2DaCY_Rw5irPqZqmcAVoHGhg1Q9FiKXGnL1LYEfXmzfoTe9GzO837_naPXpbtV8qR--fr5vbh_qjnM11dpLDZ5Q5Tn3Tvaaeke8okS3bVGEx1h2gB3pDXAgjrLW4F4RZnjvFGbn6GZnu5nbNfgOwpTcaDdpWLv020Y32H-VMPy0P-KzNVRwxmgxuN4bpPhrhjzZ9ZA7GEcXIM7ZUqEZ51oTU9Cr_9CnOKdQrrNUKqqxUFIUiuyoLsWcE_SHZQi22wTtNkG7TdDuEywzH15fcZj4G1kBLnfAAAAH2QilDTXsD8IeoY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672805765</pqid></control><display><type>article</type><title>Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Adnan, Nahim ; Zand, Maryam ; Huang, Tim H. M. ; Ruan, Jianhua</creator><creatorcontrib>Adnan, Nahim ; Zand, Maryam ; Huang, Tim H. M. ; Ruan, Jianhua</creatorcontrib><description>Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2021.3120673</identifier><identifier>PMID: 34662279</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biological system modeling ; Breast cancer ; Breast Neoplasms - genetics ; Cancer ; Cancer metastasis ; Classifiers ; Computational modeling ; Decision making ; Domains ; End users ; Evaluation ; feature engineering ; Female ; Humans ; interpretable machine learning ; Learning algorithms ; Machine Learning ; Medical prognosis ; Melanoma ; Melanoma, Cutaneous Malignant ; Metastases ; Metastasis ; performance evaluation ; Perturbation methods ; Prediction algorithms ; Prediction models ; Predictive models ; Skin Neoplasms ; Transcriptomics</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2022-05, Vol.19 (3), p.1344-1353</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-8d68ed127d44da6f82da1d7218bb68e5d006ce0a1f9e4e1a23b90f71394fa703</citedby><cites>FETCH-LOGICAL-c447t-8d68ed127d44da6f82da1d7218bb68e5d006ce0a1f9e4e1a23b90f71394fa703</cites><orcidid>0000-0002-5622-3137 ; 0000-0003-3277-1662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9578929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9578929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34662279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adnan, Nahim</creatorcontrib><creatorcontrib>Zand, Maryam</creatorcontrib><creatorcontrib>Huang, Tim H. M.</creatorcontrib><creatorcontrib>Ruan, Jianhua</creatorcontrib><title>Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains.</description><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Cancer</subject><subject>Cancer metastasis</subject><subject>Classifiers</subject><subject>Computational modeling</subject><subject>Decision making</subject><subject>Domains</subject><subject>End users</subject><subject>Evaluation</subject><subject>feature engineering</subject><subject>Female</subject><subject>Humans</subject><subject>interpretable machine learning</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Melanoma, Cutaneous Malignant</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>performance evaluation</subject><subject>Perturbation methods</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Skin Neoplasms</subject><subject>Transcriptomics</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkVtr3DAQhUVIaS7tDwiBYshLXrzV_fISyJq0DSS0lH0XsjVuHbzSVrID_ffVZrdLWhjQiPPNYYaD0AXBC0Kw-bhqlssFxZQsGKFYKnaETokQqjZG8uNtz0UtjGQn6CznJ4wpN5i_RSeMS0mpMqeoa2LIU5q7aYihcsFXd89unN3LN_bV99jOearuwwRpk2DaCY_Rw5irPqZqmcAVoHGhg1Q9FiKXGnL1LYEfXmzfoTe9GzO837_naPXpbtV8qR--fr5vbh_qjnM11dpLDZ5Q5Tn3Tvaaeke8okS3bVGEx1h2gB3pDXAgjrLW4F4RZnjvFGbn6GZnu5nbNfgOwpTcaDdpWLv020Y32H-VMPy0P-KzNVRwxmgxuN4bpPhrhjzZ9ZA7GEcXIM7ZUqEZ51oTU9Cr_9CnOKdQrrNUKqqxUFIUiuyoLsWcE_SHZQi22wTtNkG7TdDuEywzH15fcZj4G1kBLnfAAAAH2QilDTXsD8IeoY4</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Adnan, Nahim</creator><creator>Zand, Maryam</creator><creator>Huang, Tim H. M.</creator><creator>Ruan, Jianhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5622-3137</orcidid><orcidid>https://orcid.org/0000-0003-3277-1662</orcidid></search><sort><creationdate>20220501</creationdate><title>Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction</title><author>Adnan, Nahim ; Zand, Maryam ; Huang, Tim H. M. ; Ruan, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-8d68ed127d44da6f82da1d7218bb68e5d006ce0a1f9e4e1a23b90f71394fa703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Cancer</topic><topic>Cancer metastasis</topic><topic>Classifiers</topic><topic>Computational modeling</topic><topic>Decision making</topic><topic>Domains</topic><topic>End users</topic><topic>Evaluation</topic><topic>feature engineering</topic><topic>Female</topic><topic>Humans</topic><topic>interpretable machine learning</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Melanoma, Cutaneous Malignant</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>performance evaluation</topic><topic>Perturbation methods</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Skin Neoplasms</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adnan, Nahim</creatorcontrib><creatorcontrib>Zand, Maryam</creatorcontrib><creatorcontrib>Huang, Tim H. M.</creatorcontrib><creatorcontrib>Ruan, Jianhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adnan, Nahim</au><au>Zand, Maryam</au><au>Huang, Tim H. M.</au><au>Ruan, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><spage>1344</spage><epage>1353</epage><pages>1344-1353</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers. However, evaluation of these algorithms often requires substantial domain knowledge. Here, we propose a breast cancer metastasis prediction model using a very small number of biologically interpretable features, and a simple yet novel model interpretation approach that can provide personalized interpretations. In addition, we contributed, to the best of our knowledge, the first method to quantitatively compare different interpretation algorithms. Experimental results show that our model not only achieved competitive prediction accuracy, but also higher inter-classifier interpretation consistency than state-of-the-art interpretation methods. Importantly, our interpretation results can improve the generalizability of the prediction models. Overall, this work provides several novel ideas to construct and evaluate interpretable ML models that can be valuable to both the cancer machine learning community and related application domains.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34662279</pmid><doi>10.1109/TCBB.2021.3120673</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5622-3137</orcidid><orcidid>https://orcid.org/0000-0003-3277-1662</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2022-05, Vol.19 (3), p.1344-1353 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_pubmed_primary_34662279 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biological system modeling Breast cancer Breast Neoplasms - genetics Cancer Cancer metastasis Classifiers Computational modeling Decision making Domains End users Evaluation feature engineering Female Humans interpretable machine learning Learning algorithms Machine Learning Medical prognosis Melanoma Melanoma, Cutaneous Malignant Metastases Metastasis performance evaluation Perturbation methods Prediction algorithms Prediction models Predictive models Skin Neoplasms Transcriptomics |
title | Construction and Evaluation of Robust Interpretation Models for Breast Cancer Metastasis Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20and%20Evaluation%20of%20Robust%20Interpretation%20Models%20for%20Breast%20Cancer%20Metastasis%20Prediction&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Adnan,%20Nahim&rft.date=2022-05-01&rft.volume=19&rft.issue=3&rft.spage=1344&rft.epage=1353&rft.pages=1344-1353&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2021.3120673&rft_dat=%3Cproquest_RIE%3E2672805765%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672805765&rft_id=info:pmid/34662279&rft_ieee_id=9578929&rfr_iscdi=true |