Predictive generalized varying‐coefficient longitudinal model
We propose a nonparametric bivariate varying coefficient generalized linear model to predict a mean response trajectory in the future given an individual's characteristics at present or an earlier time point in a longitudinal study. Given the measurement time of the predictors, the coefficients...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2021-12, Vol.40 (28), p.6243-6259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6259 |
---|---|
container_issue | 28 |
container_start_page | 6243 |
container_title | Statistics in medicine |
container_volume | 40 |
creator | Kim, Seonjin Ryan Cho, Hyunkeun Kim, Mi‐Ok |
description | We propose a nonparametric bivariate varying coefficient generalized linear model to predict a mean response trajectory in the future given an individual's characteristics at present or an earlier time point in a longitudinal study. Given the measurement time of the predictors, the coefficients vary as functions of the future time over which the prediction of the mean response is concerned and illustrate the dynamic association between the future response and the earlier measured predictors. We use a nonparametric approach that takes advantage of features of both the kernel and the spline methods for estimation. The resulting coefficient estimator is asymptotically consistent under mild regularity conditions. We also develop a new bootstrap approach to construct simultaneous confidence bands for statistical inference about the coefficients and the predicted response trajectory based on the coverage rate of bootstrap estimates. We use the Framingham Heart Study to illustrate the methodology. The proposed procedure is applied to predict the probability trajectory of hypertension risk given individuals' health condition in early adulthood and to examine the impact of risk factors in early adulthood on a long‐term risk of hypertension over several decades. |
doi_str_mv | 10.1002/sim.9180 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34494290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597682400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3490-1103b64c801f8ad89cd659b7b841a245461591037578323b05ede90f76eb44743</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAgio4X8AlkwI0g1ZM0aZKVyOANFAV1Xdr0dIi0jTbtiK58BJ_RJzHVUUEQJItsvvNz8oeQTQp7FIDte1vvaapggYwoaBkBE2qRjIBJGSWSihWy6v0dAKWCyWWyEnOuOdMwIgdXLRbWdHaG4yk22GaVfcZiPMvaJ9tM315ejcOytMZi040r10xt1xe2yapx7Qqs1slSmVUeN-b3Grk9PrqZnEbnlydnk8PzyMRcQ0QpxHnCjQJaqqxQ2hSJ0LnMFacZ44InVOhgpJAqZnEOAgvUUMoEc84lj9fIzmfufeseevRdWltvsKqyBl3vUyZkmA4HAt3-Re9c34aNB6VlohgH-Ak0rfO-xTK9b20dXp1SSIdS01BqOpQa6NY8sM9rLL7hV4sB7H6CR8xd6YeuDH4zAEj0YENq-IKg1f_1xHZZZ10zcX3ThdFoPmorfPpz4_T67OJj83fTyJ_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597682400</pqid></control><display><type>article</type><title>Predictive generalized varying‐coefficient longitudinal model</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library All Journals</source><creator>Kim, Seonjin ; Ryan Cho, Hyunkeun ; Kim, Mi‐Ok</creator><creatorcontrib>Kim, Seonjin ; Ryan Cho, Hyunkeun ; Kim, Mi‐Ok</creatorcontrib><description>We propose a nonparametric bivariate varying coefficient generalized linear model to predict a mean response trajectory in the future given an individual's characteristics at present or an earlier time point in a longitudinal study. Given the measurement time of the predictors, the coefficients vary as functions of the future time over which the prediction of the mean response is concerned and illustrate the dynamic association between the future response and the earlier measured predictors. We use a nonparametric approach that takes advantage of features of both the kernel and the spline methods for estimation. The resulting coefficient estimator is asymptotically consistent under mild regularity conditions. We also develop a new bootstrap approach to construct simultaneous confidence bands for statistical inference about the coefficients and the predicted response trajectory based on the coverage rate of bootstrap estimates. We use the Framingham Heart Study to illustrate the methodology. The proposed procedure is applied to predict the probability trajectory of hypertension risk given individuals' health condition in early adulthood and to examine the impact of risk factors in early adulthood on a long‐term risk of hypertension over several decades.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9180</identifier><identifier>PMID: 34494290</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject><![CDATA[Adult ; bootstrap simultaneous confidence band ; generalized estimating equations ; Generalized linear models ; Humans ; Hypertension ; kernel method ; Life Sciences & Biomedicine ; Linear Models ; Longitudinal Studies ; Mathematical & Computational Biology ; Mathematics ; Medical Informatics ; Medicine, Research & Experimental ; Models, Statistical ; Physical Sciences ; predictive trajectory ; Public, Environmental & Occupational Health ; Research & Experimental Medicine ; Risk Factors ; Science & Technology ; spline method ; Statistics & Probability ; varying coefficients]]></subject><ispartof>Statistics in medicine, 2021-12, Vol.40 (28), p.6243-6259</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000693449100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3490-1103b64c801f8ad89cd659b7b841a245461591037578323b05ede90f76eb44743</citedby><cites>FETCH-LOGICAL-c3490-1103b64c801f8ad89cd659b7b841a245461591037578323b05ede90f76eb44743</cites><orcidid>0000-0002-7712-3653 ; 0000-0001-6058-0420 ; 0000-0003-2361-258X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9180$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9180$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,39265,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34494290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Seonjin</creatorcontrib><creatorcontrib>Ryan Cho, Hyunkeun</creatorcontrib><creatorcontrib>Kim, Mi‐Ok</creatorcontrib><title>Predictive generalized varying‐coefficient longitudinal model</title><title>Statistics in medicine</title><addtitle>STAT MED</addtitle><addtitle>Stat Med</addtitle><description>We propose a nonparametric bivariate varying coefficient generalized linear model to predict a mean response trajectory in the future given an individual's characteristics at present or an earlier time point in a longitudinal study. Given the measurement time of the predictors, the coefficients vary as functions of the future time over which the prediction of the mean response is concerned and illustrate the dynamic association between the future response and the earlier measured predictors. We use a nonparametric approach that takes advantage of features of both the kernel and the spline methods for estimation. The resulting coefficient estimator is asymptotically consistent under mild regularity conditions. We also develop a new bootstrap approach to construct simultaneous confidence bands for statistical inference about the coefficients and the predicted response trajectory based on the coverage rate of bootstrap estimates. We use the Framingham Heart Study to illustrate the methodology. The proposed procedure is applied to predict the probability trajectory of hypertension risk given individuals' health condition in early adulthood and to examine the impact of risk factors in early adulthood on a long‐term risk of hypertension over several decades.</description><subject>Adult</subject><subject>bootstrap simultaneous confidence band</subject><subject>generalized estimating equations</subject><subject>Generalized linear models</subject><subject>Humans</subject><subject>Hypertension</subject><subject>kernel method</subject><subject>Life Sciences & Biomedicine</subject><subject>Linear Models</subject><subject>Longitudinal Studies</subject><subject>Mathematical & Computational Biology</subject><subject>Mathematics</subject><subject>Medical Informatics</subject><subject>Medicine, Research & Experimental</subject><subject>Models, Statistical</subject><subject>Physical Sciences</subject><subject>predictive trajectory</subject><subject>Public, Environmental & Occupational Health</subject><subject>Research & Experimental Medicine</subject><subject>Risk Factors</subject><subject>Science & Technology</subject><subject>spline method</subject><subject>Statistics & Probability</subject><subject>varying coefficients</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqN0ctKxDAUBuAgio4X8AlkwI0g1ZM0aZKVyOANFAV1Xdr0dIi0jTbtiK58BJ_RJzHVUUEQJItsvvNz8oeQTQp7FIDte1vvaapggYwoaBkBE2qRjIBJGSWSihWy6v0dAKWCyWWyEnOuOdMwIgdXLRbWdHaG4yk22GaVfcZiPMvaJ9tM315ejcOytMZi040r10xt1xe2yapx7Qqs1slSmVUeN-b3Grk9PrqZnEbnlydnk8PzyMRcQ0QpxHnCjQJaqqxQ2hSJ0LnMFacZ44InVOhgpJAqZnEOAgvUUMoEc84lj9fIzmfufeseevRdWltvsKqyBl3vUyZkmA4HAt3-Re9c34aNB6VlohgH-Ak0rfO-xTK9b20dXp1SSIdS01BqOpQa6NY8sM9rLL7hV4sB7H6CR8xd6YeuDH4zAEj0YENq-IKg1f_1xHZZZ10zcX3ThdFoPmorfPpz4_T67OJj83fTyJ_U</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>Kim, Seonjin</creator><creator>Ryan Cho, Hyunkeun</creator><creator>Kim, Mi‐Ok</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7712-3653</orcidid><orcidid>https://orcid.org/0000-0001-6058-0420</orcidid><orcidid>https://orcid.org/0000-0003-2361-258X</orcidid></search><sort><creationdate>20211210</creationdate><title>Predictive generalized varying‐coefficient longitudinal model</title><author>Kim, Seonjin ; Ryan Cho, Hyunkeun ; Kim, Mi‐Ok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3490-1103b64c801f8ad89cd659b7b841a245461591037578323b05ede90f76eb44743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>bootstrap simultaneous confidence band</topic><topic>generalized estimating equations</topic><topic>Generalized linear models</topic><topic>Humans</topic><topic>Hypertension</topic><topic>kernel method</topic><topic>Life Sciences & Biomedicine</topic><topic>Linear Models</topic><topic>Longitudinal Studies</topic><topic>Mathematical & Computational Biology</topic><topic>Mathematics</topic><topic>Medical Informatics</topic><topic>Medicine, Research & Experimental</topic><topic>Models, Statistical</topic><topic>Physical Sciences</topic><topic>predictive trajectory</topic><topic>Public, Environmental & Occupational Health</topic><topic>Research & Experimental Medicine</topic><topic>Risk Factors</topic><topic>Science & Technology</topic><topic>spline method</topic><topic>Statistics & Probability</topic><topic>varying coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seonjin</creatorcontrib><creatorcontrib>Ryan Cho, Hyunkeun</creatorcontrib><creatorcontrib>Kim, Mi‐Ok</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seonjin</au><au>Ryan Cho, Hyunkeun</au><au>Kim, Mi‐Ok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive generalized varying‐coefficient longitudinal model</atitle><jtitle>Statistics in medicine</jtitle><stitle>STAT MED</stitle><addtitle>Stat Med</addtitle><date>2021-12-10</date><risdate>2021</risdate><volume>40</volume><issue>28</issue><spage>6243</spage><epage>6259</epage><pages>6243-6259</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>We propose a nonparametric bivariate varying coefficient generalized linear model to predict a mean response trajectory in the future given an individual's characteristics at present or an earlier time point in a longitudinal study. Given the measurement time of the predictors, the coefficients vary as functions of the future time over which the prediction of the mean response is concerned and illustrate the dynamic association between the future response and the earlier measured predictors. We use a nonparametric approach that takes advantage of features of both the kernel and the spline methods for estimation. The resulting coefficient estimator is asymptotically consistent under mild regularity conditions. We also develop a new bootstrap approach to construct simultaneous confidence bands for statistical inference about the coefficients and the predicted response trajectory based on the coverage rate of bootstrap estimates. We use the Framingham Heart Study to illustrate the methodology. The proposed procedure is applied to predict the probability trajectory of hypertension risk given individuals' health condition in early adulthood and to examine the impact of risk factors in early adulthood on a long‐term risk of hypertension over several decades.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>34494290</pmid><doi>10.1002/sim.9180</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7712-3653</orcidid><orcidid>https://orcid.org/0000-0001-6058-0420</orcidid><orcidid>https://orcid.org/0000-0003-2361-258X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2021-12, Vol.40 (28), p.6243-6259 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmed_primary_34494290 |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library All Journals |
subjects | Adult bootstrap simultaneous confidence band generalized estimating equations Generalized linear models Humans Hypertension kernel method Life Sciences & Biomedicine Linear Models Longitudinal Studies Mathematical & Computational Biology Mathematics Medical Informatics Medicine, Research & Experimental Models, Statistical Physical Sciences predictive trajectory Public, Environmental & Occupational Health Research & Experimental Medicine Risk Factors Science & Technology spline method Statistics & Probability varying coefficients |
title | Predictive generalized varying‐coefficient longitudinal model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20generalized%20varying%E2%80%90coefficient%20longitudinal%20model&rft.jtitle=Statistics%20in%20medicine&rft.au=Kim,%20Seonjin&rft.date=2021-12-10&rft.volume=40&rft.issue=28&rft.spage=6243&rft.epage=6259&rft.pages=6243-6259&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9180&rft_dat=%3Cproquest_pubme%3E2597682400%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597682400&rft_id=info:pmid/34494290&rfr_iscdi=true |