Blind Source Separation in Persistent Atrial Fibrillation Electrocardiograms Using Block-Term Tensor Decomposition With Löwner Constraints

The estimation of the atrial activity (AA) signal from electrocardiogram (ECG) recordings is an important step in the noninvasive analysis of atrial fibrillation (AF), the most common sustained arrhythmia encountered in clinical practice. This problem admits a blind source separation (BSS) formulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-04, Vol.26 (4), p.1538-1548
Hauptverfasser: de Oliveira, P. M. R., Goulart, J. H. de M., Fernandes, C. A. R., Zarzoso, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1548
container_issue 4
container_start_page 1538
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator de Oliveira, P. M. R.
Goulart, J. H. de M.
Fernandes, C. A. R.
Zarzoso, V.
description The estimation of the atrial activity (AA) signal from electrocardiogram (ECG) recordings is an important step in the noninvasive analysis of atrial fibrillation (AF), the most common sustained arrhythmia encountered in clinical practice. This problem admits a blind source separation (BSS) formulation that has been recently posed as a tensor factorization, using the Hankel-based block term decomposition (BTD), which is particularly well-suited to the estimation of exponential models like AA during AF. However, persistent forms of AF are characterized by short R-R intervals and very disorganized (or weak) AA, making it difficult to model AA directly and perform its successful extraction through Hankel-BTD. To overcome this drawback, the present work proposes a tensor approach to estimate QRS complexes and subtract them from the ECG, resulting in a signal that, ideally, only contains the AA component. Such an approach tackles the problem of blind separation of rational functions, which models QRS complexes explicitly. The data tensor admitting a BTD is built from Löwner matrices generated from each lead of the observed ECG. To this end, this paper formulates a variant of the recently proposed constrained alternating group lasso (CAGL) algorithm that imposes Löwner structure on the decomposition blocks. This is done by performing an orthogonal projection, which we explicitly derive, at each iteration of CAGL. Results from experiments with synthetic data show the consistency of the proposed Löwner-constrained AGL (LCAGL) in extracting the desired sources. Experimental results obtained on a population of 20 patients suffering from persistent AF show that the proposed variant outperforms other tensor-based methods in terms of atrial signal estimation quality from ECG records as short as a single heartbeat.
doi_str_mv 10.1109/JBHI.2021.3108699
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34460408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9525188</ieee_id><sourcerecordid>2567984243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-3331484227f72bbd988e51e24cae1b4524f4ee58a0f221bf6adad8402a97fae23</originalsourceid><addsrcrecordid>eNpdkcFuEzEQhlcIRKvSB0BIyBIXOCTYY6_jPSahJUWRQGoqjpZ3d7Z12bVT2wHxDLwPL8CL4bBpDszFo_H3j2bmL4qXjE4Zo9X7T4vV1RQosClnVMmqelKcApNqAkDV08ecVeKkOI_xnuZQuVTJ58UJF0JSQdVp8WvRW9eSa78LDZJr3JpgkvWOWEe-YIg2JnSJzFOwpieXtg6270fioscmBd-Y0Fp_G8wQyU207pYset98m2wwDGSDLvpAPmDjh62P9p_wq013ZP3n9w-HgSy9iykY61J8UTzrTB_x_PCeFTeXF5vlarL-_PFqOV9PGgEyTTjnTCgBMOtmUNdtpRSWDEE0BlktShCdQCyVoR0AqztpWtMqQcFUs84g8LPi3dj3zvR6G-xgwk_tjdWr-Vrva5RzkELJ7yyzb0d2G_zDDmPSg40N5hs49LuooZSzKg8jeEbf_Ife56u6vIkGWVKoFFcyU2ykmuBjDNgdJ2BU743Ve2P13lh9MDZrXh867-oB26Pi0cYMvBoBi4jH76qEkinF_wIiH6ho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650298386</pqid></control><display><type>article</type><title>Blind Source Separation in Persistent Atrial Fibrillation Electrocardiograms Using Block-Term Tensor Decomposition With Löwner Constraints</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>de Oliveira, P. M. R. ; Goulart, J. H. de M. ; Fernandes, C. A. R. ; Zarzoso, V.</creator><creatorcontrib>de Oliveira, P. M. R. ; Goulart, J. H. de M. ; Fernandes, C. A. R. ; Zarzoso, V.</creatorcontrib><description>The estimation of the atrial activity (AA) signal from electrocardiogram (ECG) recordings is an important step in the noninvasive analysis of atrial fibrillation (AF), the most common sustained arrhythmia encountered in clinical practice. This problem admits a blind source separation (BSS) formulation that has been recently posed as a tensor factorization, using the Hankel-based block term decomposition (BTD), which is particularly well-suited to the estimation of exponential models like AA during AF. However, persistent forms of AF are characterized by short R-R intervals and very disorganized (or weak) AA, making it difficult to model AA directly and perform its successful extraction through Hankel-BTD. To overcome this drawback, the present work proposes a tensor approach to estimate QRS complexes and subtract them from the ECG, resulting in a signal that, ideally, only contains the AA component. Such an approach tackles the problem of blind separation of rational functions, which models QRS complexes explicitly. The data tensor admitting a BTD is built from Löwner matrices generated from each lead of the observed ECG. To this end, this paper formulates a variant of the recently proposed constrained alternating group lasso (CAGL) algorithm that imposes Löwner structure on the decomposition blocks. This is done by performing an orthogonal projection, which we explicitly derive, at each iteration of CAGL. Results from experiments with synthetic data show the consistency of the proposed Löwner-constrained AGL (LCAGL) in extracting the desired sources. Experimental results obtained on a population of 20 patients suffering from persistent AF show that the proposed variant outperforms other tensor-based methods in terms of atrial signal estimation quality from ECG records as short as a single heartbeat.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3108699</identifier><identifier>PMID: 34460408</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Arrhythmia ; Atrial fibrillation ; Atrial Fibrillation - diagnosis ; Bioengineering ; Blind source separation ; block term decomposition ; Cardiac arrhythmia ; Cardiology and cardiovascular system ; Computational modeling ; Computer Science ; constrained alternating group lasso ; Constraints ; Decomposition ; EKG ; electrocardiogram ; Electrocardiography ; Electrocardiography - methods ; Estimation ; Fibrillation ; Heart Atria ; Heart beat ; Human health and pathology ; Humans ; Iterative methods ; Life Sciences ; Löwner matrices ; Mathematical analysis ; Rational functions ; Separation ; Signal and Image Processing ; Signal processing ; Signal Processing, Computer-Assisted ; Signal quality ; Tensors</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-04, Vol.26 (4), p.1538-1548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-3331484227f72bbd988e51e24cae1b4524f4ee58a0f221bf6adad8402a97fae23</citedby><cites>FETCH-LOGICAL-c426t-3331484227f72bbd988e51e24cae1b4524f4ee58a0f221bf6adad8402a97fae23</cites><orcidid>0000-0001-9286-1163 ; 0000-0002-9933-9930 ; 0000-0002-5310-4714 ; 0000-0003-1812-6229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9525188$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34460408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03326486$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, P. M. R.</creatorcontrib><creatorcontrib>Goulart, J. H. de M.</creatorcontrib><creatorcontrib>Fernandes, C. A. R.</creatorcontrib><creatorcontrib>Zarzoso, V.</creatorcontrib><title>Blind Source Separation in Persistent Atrial Fibrillation Electrocardiograms Using Block-Term Tensor Decomposition With Löwner Constraints</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The estimation of the atrial activity (AA) signal from electrocardiogram (ECG) recordings is an important step in the noninvasive analysis of atrial fibrillation (AF), the most common sustained arrhythmia encountered in clinical practice. This problem admits a blind source separation (BSS) formulation that has been recently posed as a tensor factorization, using the Hankel-based block term decomposition (BTD), which is particularly well-suited to the estimation of exponential models like AA during AF. However, persistent forms of AF are characterized by short R-R intervals and very disorganized (or weak) AA, making it difficult to model AA directly and perform its successful extraction through Hankel-BTD. To overcome this drawback, the present work proposes a tensor approach to estimate QRS complexes and subtract them from the ECG, resulting in a signal that, ideally, only contains the AA component. Such an approach tackles the problem of blind separation of rational functions, which models QRS complexes explicitly. The data tensor admitting a BTD is built from Löwner matrices generated from each lead of the observed ECG. To this end, this paper formulates a variant of the recently proposed constrained alternating group lasso (CAGL) algorithm that imposes Löwner structure on the decomposition blocks. This is done by performing an orthogonal projection, which we explicitly derive, at each iteration of CAGL. Results from experiments with synthetic data show the consistency of the proposed Löwner-constrained AGL (LCAGL) in extracting the desired sources. Experimental results obtained on a population of 20 patients suffering from persistent AF show that the proposed variant outperforms other tensor-based methods in terms of atrial signal estimation quality from ECG records as short as a single heartbeat.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Atrial fibrillation</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Bioengineering</subject><subject>Blind source separation</subject><subject>block term decomposition</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology and cardiovascular system</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>constrained alternating group lasso</subject><subject>Constraints</subject><subject>Decomposition</subject><subject>EKG</subject><subject>electrocardiogram</subject><subject>Electrocardiography</subject><subject>Electrocardiography - methods</subject><subject>Estimation</subject><subject>Fibrillation</subject><subject>Heart Atria</subject><subject>Heart beat</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Iterative methods</subject><subject>Life Sciences</subject><subject>Löwner matrices</subject><subject>Mathematical analysis</subject><subject>Rational functions</subject><subject>Separation</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal quality</subject><subject>Tensors</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkcFuEzEQhlcIRKvSB0BIyBIXOCTYY6_jPSahJUWRQGoqjpZ3d7Z12bVT2wHxDLwPL8CL4bBpDszFo_H3j2bmL4qXjE4Zo9X7T4vV1RQosClnVMmqelKcApNqAkDV08ecVeKkOI_xnuZQuVTJ58UJF0JSQdVp8WvRW9eSa78LDZJr3JpgkvWOWEe-YIg2JnSJzFOwpieXtg6270fioscmBd-Y0Fp_G8wQyU207pYset98m2wwDGSDLvpAPmDjh62P9p_wq013ZP3n9w-HgSy9iykY61J8UTzrTB_x_PCeFTeXF5vlarL-_PFqOV9PGgEyTTjnTCgBMOtmUNdtpRSWDEE0BlktShCdQCyVoR0AqztpWtMqQcFUs84g8LPi3dj3zvR6G-xgwk_tjdWr-Vrva5RzkELJ7yyzb0d2G_zDDmPSg40N5hs49LuooZSzKg8jeEbf_Ife56u6vIkGWVKoFFcyU2ykmuBjDNgdJ2BU743Ve2P13lh9MDZrXh867-oB26Pi0cYMvBoBi4jH76qEkinF_wIiH6ho</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>de Oliveira, P. M. R.</creator><creator>Goulart, J. H. de M.</creator><creator>Fernandes, C. A. R.</creator><creator>Zarzoso, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9286-1163</orcidid><orcidid>https://orcid.org/0000-0002-9933-9930</orcidid><orcidid>https://orcid.org/0000-0002-5310-4714</orcidid><orcidid>https://orcid.org/0000-0003-1812-6229</orcidid></search><sort><creationdate>20220401</creationdate><title>Blind Source Separation in Persistent Atrial Fibrillation Electrocardiograms Using Block-Term Tensor Decomposition With Löwner Constraints</title><author>de Oliveira, P. M. R. ; Goulart, J. H. de M. ; Fernandes, C. A. R. ; Zarzoso, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-3331484227f72bbd988e51e24cae1b4524f4ee58a0f221bf6adad8402a97fae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Atrial fibrillation</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Bioengineering</topic><topic>Blind source separation</topic><topic>block term decomposition</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology and cardiovascular system</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>constrained alternating group lasso</topic><topic>Constraints</topic><topic>Decomposition</topic><topic>EKG</topic><topic>electrocardiogram</topic><topic>Electrocardiography</topic><topic>Electrocardiography - methods</topic><topic>Estimation</topic><topic>Fibrillation</topic><topic>Heart Atria</topic><topic>Heart beat</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Iterative methods</topic><topic>Life Sciences</topic><topic>Löwner matrices</topic><topic>Mathematical analysis</topic><topic>Rational functions</topic><topic>Separation</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal quality</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, P. M. R.</creatorcontrib><creatorcontrib>Goulart, J. H. de M.</creatorcontrib><creatorcontrib>Fernandes, C. A. R.</creatorcontrib><creatorcontrib>Zarzoso, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, P. M. R.</au><au>Goulart, J. H. de M.</au><au>Fernandes, C. A. R.</au><au>Zarzoso, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Source Separation in Persistent Atrial Fibrillation Electrocardiograms Using Block-Term Tensor Decomposition With Löwner Constraints</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>26</volume><issue>4</issue><spage>1538</spage><epage>1548</epage><pages>1538-1548</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The estimation of the atrial activity (AA) signal from electrocardiogram (ECG) recordings is an important step in the noninvasive analysis of atrial fibrillation (AF), the most common sustained arrhythmia encountered in clinical practice. This problem admits a blind source separation (BSS) formulation that has been recently posed as a tensor factorization, using the Hankel-based block term decomposition (BTD), which is particularly well-suited to the estimation of exponential models like AA during AF. However, persistent forms of AF are characterized by short R-R intervals and very disorganized (or weak) AA, making it difficult to model AA directly and perform its successful extraction through Hankel-BTD. To overcome this drawback, the present work proposes a tensor approach to estimate QRS complexes and subtract them from the ECG, resulting in a signal that, ideally, only contains the AA component. Such an approach tackles the problem of blind separation of rational functions, which models QRS complexes explicitly. The data tensor admitting a BTD is built from Löwner matrices generated from each lead of the observed ECG. To this end, this paper formulates a variant of the recently proposed constrained alternating group lasso (CAGL) algorithm that imposes Löwner structure on the decomposition blocks. This is done by performing an orthogonal projection, which we explicitly derive, at each iteration of CAGL. Results from experiments with synthetic data show the consistency of the proposed Löwner-constrained AGL (LCAGL) in extracting the desired sources. Experimental results obtained on a population of 20 patients suffering from persistent AF show that the proposed variant outperforms other tensor-based methods in terms of atrial signal estimation quality from ECG records as short as a single heartbeat.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34460408</pmid><doi>10.1109/JBHI.2021.3108699</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9286-1163</orcidid><orcidid>https://orcid.org/0000-0002-9933-9930</orcidid><orcidid>https://orcid.org/0000-0002-5310-4714</orcidid><orcidid>https://orcid.org/0000-0003-1812-6229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-04, Vol.26 (4), p.1538-1548
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmed_primary_34460408
source MEDLINE; IEEE Electronic Library (IEL)
subjects Algorithms
Arrhythmia
Atrial fibrillation
Atrial Fibrillation - diagnosis
Bioengineering
Blind source separation
block term decomposition
Cardiac arrhythmia
Cardiology and cardiovascular system
Computational modeling
Computer Science
constrained alternating group lasso
Constraints
Decomposition
EKG
electrocardiogram
Electrocardiography
Electrocardiography - methods
Estimation
Fibrillation
Heart Atria
Heart beat
Human health and pathology
Humans
Iterative methods
Life Sciences
Löwner matrices
Mathematical analysis
Rational functions
Separation
Signal and Image Processing
Signal processing
Signal Processing, Computer-Assisted
Signal quality
Tensors
title Blind Source Separation in Persistent Atrial Fibrillation Electrocardiograms Using Block-Term Tensor Decomposition With Löwner Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Source%20Separation%20in%20Persistent%20Atrial%20Fibrillation%20Electrocardiograms%20Using%20Block-Term%20Tensor%20Decomposition%20With%20L%C3%B6wner%20Constraints&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=de%20Oliveira,%20P.%20M.%20R.&rft.date=2022-04-01&rft.volume=26&rft.issue=4&rft.spage=1538&rft.epage=1548&rft.pages=1538-1548&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3108699&rft_dat=%3Cproquest_pubme%3E2567984243%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650298386&rft_id=info:pmid/34460408&rft_ieee_id=9525188&rfr_iscdi=true