Photocatalytic degradation of 2,4-DNT in simulated wastewater by magnetic CoFe 2 O 4 /SiO 2 /TiO 2 nanoparticles
Discharge of 2,4-dinitrotoluene (2,4-DNT) into the environment leads to a serious soil and water sources pollution problem, due to toxicity and possible carcinogenicity of this toxic substance. In this work, the photocatalytic degradation of 2,4-DNT was investigated using CoFe O /SiO /TiO nanopartic...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2022-01, Vol.29 (5), p.6479 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Discharge of 2,4-dinitrotoluene (2,4-DNT) into the environment leads to a serious soil and water sources pollution problem, due to toxicity and possible carcinogenicity of this toxic substance. In this work, the photocatalytic degradation of 2,4-DNT was investigated using CoFe
O
/SiO
/TiO
nanoparticles. The catalyst features were characterized by using XRD, TEM, EDX, UV-vis DRS, FTIR, and VSM techniques. The influence of different experimental factors on degradation efficiency including pH value, catalyst dosages, and initiate concentration of 2,4-DNT were investigated. Mineralization of the model pollutant was determined using TOC analysis under optimum conditions. A possible mechanism, process kinetic and reusability of magnetic photocatalyst were also performed. In optimum experimental conditions (pH=3, photocatalyst dosage=0.75 g/L, 2,4-DNT=0.025 g/L), degradation efficiency achieved 88.5% within 180-min reaction time with TOC removal of 55.6%. Dominate oxidizing radicals during the degradation of 2,4-DNT by CoFe
O
/SiO
/TiO
were hydroxyl radicals. The photocatalytic degradation of 2,4-DNT followed first-order rate kinetics. After three successive use cycles, the degradation efficiency was reduced by 64%. Our results revealed that the synthesized CoFe
O
/SiO
/TiO
photocatalyst was a good choice for degradation of 2,4-DNT, due to proper potential reusability and catalytic activity. |
---|---|
ISSN: | 1614-7499 |