Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies
How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO 2 , temperature, and soil moisture) and investigated th...
Gespeichert in:
Veröffentlicht in: | Journal of chemical ecology 2021-11, Vol.47 (10-11), p.889-906 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 906 |
---|---|
container_issue | 10-11 |
container_start_page | 889 |
container_title | Journal of chemical ecology |
container_volume | 47 |
creator | Guyer, Anouk van Doan, Cong Maurer, Corina Machado, Ricardo A. R. Mateo, Pierre Steinauer, Katja Kesner, Lucie Hoch, Günter Kahmen, Ansgar Erb, Matthias Robert, Christelle A. M. |
description | How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO
2
, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (
Diabrotica balteata
), and the entomopathogenic nematode (EPN)
Heterorhabditis bacteriophora
. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO
2
levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO
2
further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO
2
showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents. |
doi_str_mv | 10.1007/s10886-021-01303-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34415498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601736073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-31a1528b9fc5d10bcd2ebebb5080663a87a4ea0721cd3409592e438feb7a79bf3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoModq3-AS8k4KWOnkzmI3MjtEO1C10E0euQZM50U2aTNcm06K8369RVb8SrkOR5zwcPIc8ZvGEA7dvIQIimgJIVwDjwontAVqxuecHqhj0kK4BOFMA5OyFPYrwBgLIR9WNywquK1VUnVsT0k92phLTfKneNdOOHecr3SDfzlGwKfr-1hq5dwqBMst5Feo7pDtHRjbLf8TU9o5-8T_QSg7a3PuQX5Qa6TpFeONxZjE_Jo1FNEZ_dn6fky_uLz_1lcfXxw7o_uypM1Vap4EyxuhS6G009MNBmKFGj1jUIaBquRKsqVNCWzAy8gq7uSqy4GFG3qu30yE_Ju6XuftY7HAy6FNQk9yFvGL5Jr6z8-8fZrbz2t1I0jLOS5wIv7wsE_3XGmOSNn4PLM8uyAdbyBtoDVS6UCT7GgOOxAwN5ECMXMTKLkT_FyC6HXvw52zHyy0QGXi3AHWo_RmPRGTxiWV0jGiGghYPFTIv_p3ub1MFc72eXcpQv0ZjxrDz8XvIf8_8Avcq6sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601736073</pqid></control><display><type>article</type><title>Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Guyer, Anouk ; van Doan, Cong ; Maurer, Corina ; Machado, Ricardo A. R. ; Mateo, Pierre ; Steinauer, Katja ; Kesner, Lucie ; Hoch, Günter ; Kahmen, Ansgar ; Erb, Matthias ; Robert, Christelle A. M.</creator><creatorcontrib>Guyer, Anouk ; van Doan, Cong ; Maurer, Corina ; Machado, Ricardo A. R. ; Mateo, Pierre ; Steinauer, Katja ; Kesner, Lucie ; Hoch, Günter ; Kahmen, Ansgar ; Erb, Matthias ; Robert, Christelle A. M.</creatorcontrib><description>How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO
2
, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (
Diabrotica balteata
), and the entomopathogenic nematode (EPN)
Heterorhabditis bacteriophora
. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO
2
levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO
2
further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO
2
showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-021-01303-9</identifier><identifier>PMID: 34415498</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject><![CDATA[Abiotic factors ; Agricultural production ; Agriculture ; Animals ; Biochemistry ; Biochemistry & Molecular Biology ; Biological control ; Biological Microscopy ; Biomass ; Biomedical and Life Sciences ; Carbon dioxide ; Climate Change ; Climate prediction ; Coleoptera - growth & development ; Coleoptera - physiology ; Corn ; Drought ; Ecology ; Entomology ; Entomopathogenic nematodes ; Environmental impact ; Environmental Sciences & Ecology ; Food Chain ; Herbivores ; High temperature ; Infectivity ; Insects ; Larva - growth & development ; Larva - physiology ; Leaves ; Life Sciences ; Life Sciences & Biomedicine ; Nematodes ; Plant biomass ; Plants ; Science & Technology ; Soil investigations ; Soil moisture ; Soil temperature ; Strongyloidea - physiology ; Sugar ; Survival ; Tri-trophic interactions ; Wilting ; Zea mays - growth & development ; Zea mays - physiology]]></subject><ispartof>Journal of chemical ecology, 2021-11, Vol.47 (10-11), p.889-906</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000686880700002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-31a1528b9fc5d10bcd2ebebb5080663a87a4ea0721cd3409592e438feb7a79bf3</citedby><cites>FETCH-LOGICAL-c474t-31a1528b9fc5d10bcd2ebebb5080663a87a4ea0721cd3409592e438feb7a79bf3</cites><orcidid>0000-0003-3415-2371 ; 0000-0001-8103-4111 ; 0000-0003-0985-9746 ; 0000-0003-4338-3024 ; 0000-0002-4446-9834 ; 0000-0002-3626-2569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10886-021-01303-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10886-021-01303-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,39265,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34415498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guyer, Anouk</creatorcontrib><creatorcontrib>van Doan, Cong</creatorcontrib><creatorcontrib>Maurer, Corina</creatorcontrib><creatorcontrib>Machado, Ricardo A. R.</creatorcontrib><creatorcontrib>Mateo, Pierre</creatorcontrib><creatorcontrib>Steinauer, Katja</creatorcontrib><creatorcontrib>Kesner, Lucie</creatorcontrib><creatorcontrib>Hoch, Günter</creatorcontrib><creatorcontrib>Kahmen, Ansgar</creatorcontrib><creatorcontrib>Erb, Matthias</creatorcontrib><creatorcontrib>Robert, Christelle A. M.</creatorcontrib><title>Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><addtitle>J CHEM ECOL</addtitle><addtitle>J Chem Ecol</addtitle><description>How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO
2
, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (
Diabrotica balteata
), and the entomopathogenic nematode (EPN)
Heterorhabditis bacteriophora
. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO
2
levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO
2
further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO
2
showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.</description><subject>Abiotic factors</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biological control</subject><subject>Biological Microscopy</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Climate Change</subject><subject>Climate prediction</subject><subject>Coleoptera - growth & development</subject><subject>Coleoptera - physiology</subject><subject>Corn</subject><subject>Drought</subject><subject>Ecology</subject><subject>Entomology</subject><subject>Entomopathogenic nematodes</subject><subject>Environmental impact</subject><subject>Environmental Sciences & Ecology</subject><subject>Food Chain</subject><subject>Herbivores</subject><subject>High temperature</subject><subject>Infectivity</subject><subject>Insects</subject><subject>Larva - growth & development</subject><subject>Larva - physiology</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Nematodes</subject><subject>Plant biomass</subject><subject>Plants</subject><subject>Science & Technology</subject><subject>Soil investigations</subject><subject>Soil moisture</subject><subject>Soil temperature</subject><subject>Strongyloidea - physiology</subject><subject>Sugar</subject><subject>Survival</subject><subject>Tri-trophic interactions</subject><subject>Wilting</subject><subject>Zea mays - growth & development</subject><subject>Zea mays - physiology</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1rFDEUhoModq3-AS8k4KWOnkzmI3MjtEO1C10E0euQZM50U2aTNcm06K8369RVb8SrkOR5zwcPIc8ZvGEA7dvIQIimgJIVwDjwontAVqxuecHqhj0kK4BOFMA5OyFPYrwBgLIR9WNywquK1VUnVsT0k92phLTfKneNdOOHecr3SDfzlGwKfr-1hq5dwqBMst5Feo7pDtHRjbLf8TU9o5-8T_QSg7a3PuQX5Qa6TpFeONxZjE_Jo1FNEZ_dn6fky_uLz_1lcfXxw7o_uypM1Vap4EyxuhS6G009MNBmKFGj1jUIaBquRKsqVNCWzAy8gq7uSqy4GFG3qu30yE_Ju6XuftY7HAy6FNQk9yFvGL5Jr6z8-8fZrbz2t1I0jLOS5wIv7wsE_3XGmOSNn4PLM8uyAdbyBtoDVS6UCT7GgOOxAwN5ECMXMTKLkT_FyC6HXvw52zHyy0QGXi3AHWo_RmPRGTxiWV0jGiGghYPFTIv_p3ub1MFc72eXcpQv0ZjxrDz8XvIf8_8Avcq6sw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Guyer, Anouk</creator><creator>van Doan, Cong</creator><creator>Maurer, Corina</creator><creator>Machado, Ricardo A. R.</creator><creator>Mateo, Pierre</creator><creator>Steinauer, Katja</creator><creator>Kesner, Lucie</creator><creator>Hoch, Günter</creator><creator>Kahmen, Ansgar</creator><creator>Erb, Matthias</creator><creator>Robert, Christelle A. M.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3415-2371</orcidid><orcidid>https://orcid.org/0000-0001-8103-4111</orcidid><orcidid>https://orcid.org/0000-0003-0985-9746</orcidid><orcidid>https://orcid.org/0000-0003-4338-3024</orcidid><orcidid>https://orcid.org/0000-0002-4446-9834</orcidid><orcidid>https://orcid.org/0000-0002-3626-2569</orcidid></search><sort><creationdate>20211101</creationdate><title>Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies</title><author>Guyer, Anouk ; van Doan, Cong ; Maurer, Corina ; Machado, Ricardo A. R. ; Mateo, Pierre ; Steinauer, Katja ; Kesner, Lucie ; Hoch, Günter ; Kahmen, Ansgar ; Erb, Matthias ; Robert, Christelle A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-31a1528b9fc5d10bcd2ebebb5080663a87a4ea0721cd3409592e438feb7a79bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic factors</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biological control</topic><topic>Biological Microscopy</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Climate Change</topic><topic>Climate prediction</topic><topic>Coleoptera - growth & development</topic><topic>Coleoptera - physiology</topic><topic>Corn</topic><topic>Drought</topic><topic>Ecology</topic><topic>Entomology</topic><topic>Entomopathogenic nematodes</topic><topic>Environmental impact</topic><topic>Environmental Sciences & Ecology</topic><topic>Food Chain</topic><topic>Herbivores</topic><topic>High temperature</topic><topic>Infectivity</topic><topic>Insects</topic><topic>Larva - growth & development</topic><topic>Larva - physiology</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Nematodes</topic><topic>Plant biomass</topic><topic>Plants</topic><topic>Science & Technology</topic><topic>Soil investigations</topic><topic>Soil moisture</topic><topic>Soil temperature</topic><topic>Strongyloidea - physiology</topic><topic>Sugar</topic><topic>Survival</topic><topic>Tri-trophic interactions</topic><topic>Wilting</topic><topic>Zea mays - growth & development</topic><topic>Zea mays - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guyer, Anouk</creatorcontrib><creatorcontrib>van Doan, Cong</creatorcontrib><creatorcontrib>Maurer, Corina</creatorcontrib><creatorcontrib>Machado, Ricardo A. R.</creatorcontrib><creatorcontrib>Mateo, Pierre</creatorcontrib><creatorcontrib>Steinauer, Katja</creatorcontrib><creatorcontrib>Kesner, Lucie</creatorcontrib><creatorcontrib>Hoch, Günter</creatorcontrib><creatorcontrib>Kahmen, Ansgar</creatorcontrib><creatorcontrib>Erb, Matthias</creatorcontrib><creatorcontrib>Robert, Christelle A. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guyer, Anouk</au><au>van Doan, Cong</au><au>Maurer, Corina</au><au>Machado, Ricardo A. R.</au><au>Mateo, Pierre</au><au>Steinauer, Katja</au><au>Kesner, Lucie</au><au>Hoch, Günter</au><au>Kahmen, Ansgar</au><au>Erb, Matthias</au><au>Robert, Christelle A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies</atitle><jtitle>Journal of chemical ecology</jtitle><stitle>J Chem Ecol</stitle><stitle>J CHEM ECOL</stitle><addtitle>J Chem Ecol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>47</volume><issue>10-11</issue><spage>889</spage><epage>906</epage><pages>889-906</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><abstract>How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO
2
, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (
Diabrotica balteata
), and the entomopathogenic nematode (EPN)
Heterorhabditis bacteriophora
. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO
2
levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO
2
further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO
2
showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34415498</pmid><doi>10.1007/s10886-021-01303-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3415-2371</orcidid><orcidid>https://orcid.org/0000-0001-8103-4111</orcidid><orcidid>https://orcid.org/0000-0003-0985-9746</orcidid><orcidid>https://orcid.org/0000-0003-4338-3024</orcidid><orcidid>https://orcid.org/0000-0002-4446-9834</orcidid><orcidid>https://orcid.org/0000-0002-3626-2569</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-0331 |
ispartof | Journal of chemical ecology, 2021-11, Vol.47 (10-11), p.889-906 |
issn | 0098-0331 1573-1561 |
language | eng |
recordid | cdi_pubmed_primary_34415498 |
source | MEDLINE; SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Abiotic factors Agricultural production Agriculture Animals Biochemistry Biochemistry & Molecular Biology Biological control Biological Microscopy Biomass Biomedical and Life Sciences Carbon dioxide Climate Change Climate prediction Coleoptera - growth & development Coleoptera - physiology Corn Drought Ecology Entomology Entomopathogenic nematodes Environmental impact Environmental Sciences & Ecology Food Chain Herbivores High temperature Infectivity Insects Larva - growth & development Larva - physiology Leaves Life Sciences Life Sciences & Biomedicine Nematodes Plant biomass Plants Science & Technology Soil investigations Soil moisture Soil temperature Strongyloidea - physiology Sugar Survival Tri-trophic interactions Wilting Zea mays - growth & development Zea mays - physiology |
title | Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20Change%20Modulates%20Multitrophic%20Interactions%20Between%20Maize,%20A%20Root%20Herbivore,%20and%20Its%20Enemies&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Guyer,%20Anouk&rft.date=2021-11-01&rft.volume=47&rft.issue=10-11&rft.spage=889&rft.epage=906&rft.pages=889-906&rft.issn=0098-0331&rft.eissn=1573-1561&rft_id=info:doi/10.1007/s10886-021-01303-9&rft_dat=%3Cproquest_pubme%3E2601736073%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601736073&rft_id=info:pmid/34415498&rfr_iscdi=true |