Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies

How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO 2 , temperature, and soil moisture) and investigated th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2021-11, Vol.47 (10-11), p.889-906
Hauptverfasser: Guyer, Anouk, van Doan, Cong, Maurer, Corina, Machado, Ricardo A. R., Mateo, Pierre, Steinauer, Katja, Kesner, Lucie, Hoch, Günter, Kahmen, Ansgar, Erb, Matthias, Robert, Christelle A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 906
container_issue 10-11
container_start_page 889
container_title Journal of chemical ecology
container_volume 47
creator Guyer, Anouk
van Doan, Cong
Maurer, Corina
Machado, Ricardo A. R.
Mateo, Pierre
Steinauer, Katja
Kesner, Lucie
Hoch, Günter
Kahmen, Ansgar
Erb, Matthias
Robert, Christelle A. M.
description How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO 2 , temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle ( Diabrotica balteata ), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora . Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO 2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO 2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO 2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.
doi_str_mv 10.1007/s10886-021-01303-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34415498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601736073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-31a1528b9fc5d10bcd2ebebb5080663a87a4ea0721cd3409592e438feb7a79bf3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoModq3-AS8k4KWOnkzmI3MjtEO1C10E0euQZM50U2aTNcm06K8369RVb8SrkOR5zwcPIc8ZvGEA7dvIQIimgJIVwDjwontAVqxuecHqhj0kK4BOFMA5OyFPYrwBgLIR9WNywquK1VUnVsT0k92phLTfKneNdOOHecr3SDfzlGwKfr-1hq5dwqBMst5Feo7pDtHRjbLf8TU9o5-8T_QSg7a3PuQX5Qa6TpFeONxZjE_Jo1FNEZ_dn6fky_uLz_1lcfXxw7o_uypM1Vap4EyxuhS6G009MNBmKFGj1jUIaBquRKsqVNCWzAy8gq7uSqy4GFG3qu30yE_Ju6XuftY7HAy6FNQk9yFvGL5Jr6z8-8fZrbz2t1I0jLOS5wIv7wsE_3XGmOSNn4PLM8uyAdbyBtoDVS6UCT7GgOOxAwN5ECMXMTKLkT_FyC6HXvw52zHyy0QGXi3AHWo_RmPRGTxiWV0jGiGghYPFTIv_p3ub1MFc72eXcpQv0ZjxrDz8XvIf8_8Avcq6sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601736073</pqid></control><display><type>article</type><title>Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Guyer, Anouk ; van Doan, Cong ; Maurer, Corina ; Machado, Ricardo A. R. ; Mateo, Pierre ; Steinauer, Katja ; Kesner, Lucie ; Hoch, Günter ; Kahmen, Ansgar ; Erb, Matthias ; Robert, Christelle A. M.</creator><creatorcontrib>Guyer, Anouk ; van Doan, Cong ; Maurer, Corina ; Machado, Ricardo A. R. ; Mateo, Pierre ; Steinauer, Katja ; Kesner, Lucie ; Hoch, Günter ; Kahmen, Ansgar ; Erb, Matthias ; Robert, Christelle A. M.</creatorcontrib><description>How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO 2 , temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle ( Diabrotica balteata ), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora . Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO 2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO 2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO 2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-021-01303-9</identifier><identifier>PMID: 34415498</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject><![CDATA[Abiotic factors ; Agricultural production ; Agriculture ; Animals ; Biochemistry ; Biochemistry & Molecular Biology ; Biological control ; Biological Microscopy ; Biomass ; Biomedical and Life Sciences ; Carbon dioxide ; Climate Change ; Climate prediction ; Coleoptera - growth & development ; Coleoptera - physiology ; Corn ; Drought ; Ecology ; Entomology ; Entomopathogenic nematodes ; Environmental impact ; Environmental Sciences & Ecology ; Food Chain ; Herbivores ; High temperature ; Infectivity ; Insects ; Larva - growth & development ; Larva - physiology ; Leaves ; Life Sciences ; Life Sciences & Biomedicine ; Nematodes ; Plant biomass ; Plants ; Science & Technology ; Soil investigations ; Soil moisture ; Soil temperature ; Strongyloidea - physiology ; Sugar ; Survival ; Tri-trophic interactions ; Wilting ; Zea mays - growth & development ; Zea mays - physiology]]></subject><ispartof>Journal of chemical ecology, 2021-11, Vol.47 (10-11), p.889-906</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000686880700002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-31a1528b9fc5d10bcd2ebebb5080663a87a4ea0721cd3409592e438feb7a79bf3</citedby><cites>FETCH-LOGICAL-c474t-31a1528b9fc5d10bcd2ebebb5080663a87a4ea0721cd3409592e438feb7a79bf3</cites><orcidid>0000-0003-3415-2371 ; 0000-0001-8103-4111 ; 0000-0003-0985-9746 ; 0000-0003-4338-3024 ; 0000-0002-4446-9834 ; 0000-0002-3626-2569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10886-021-01303-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10886-021-01303-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,39265,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34415498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guyer, Anouk</creatorcontrib><creatorcontrib>van Doan, Cong</creatorcontrib><creatorcontrib>Maurer, Corina</creatorcontrib><creatorcontrib>Machado, Ricardo A. R.</creatorcontrib><creatorcontrib>Mateo, Pierre</creatorcontrib><creatorcontrib>Steinauer, Katja</creatorcontrib><creatorcontrib>Kesner, Lucie</creatorcontrib><creatorcontrib>Hoch, Günter</creatorcontrib><creatorcontrib>Kahmen, Ansgar</creatorcontrib><creatorcontrib>Erb, Matthias</creatorcontrib><creatorcontrib>Robert, Christelle A. M.</creatorcontrib><title>Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><addtitle>J CHEM ECOL</addtitle><addtitle>J Chem Ecol</addtitle><description>How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO 2 , temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle ( Diabrotica balteata ), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora . Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO 2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO 2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO 2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.</description><subject>Abiotic factors</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biological control</subject><subject>Biological Microscopy</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Climate Change</subject><subject>Climate prediction</subject><subject>Coleoptera - growth &amp; development</subject><subject>Coleoptera - physiology</subject><subject>Corn</subject><subject>Drought</subject><subject>Ecology</subject><subject>Entomology</subject><subject>Entomopathogenic nematodes</subject><subject>Environmental impact</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Food Chain</subject><subject>Herbivores</subject><subject>High temperature</subject><subject>Infectivity</subject><subject>Insects</subject><subject>Larva - growth &amp; development</subject><subject>Larva - physiology</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Nematodes</subject><subject>Plant biomass</subject><subject>Plants</subject><subject>Science &amp; Technology</subject><subject>Soil investigations</subject><subject>Soil moisture</subject><subject>Soil temperature</subject><subject>Strongyloidea - physiology</subject><subject>Sugar</subject><subject>Survival</subject><subject>Tri-trophic interactions</subject><subject>Wilting</subject><subject>Zea mays - growth &amp; development</subject><subject>Zea mays - physiology</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1rFDEUhoModq3-AS8k4KWOnkzmI3MjtEO1C10E0euQZM50U2aTNcm06K8369RVb8SrkOR5zwcPIc8ZvGEA7dvIQIimgJIVwDjwontAVqxuecHqhj0kK4BOFMA5OyFPYrwBgLIR9WNywquK1VUnVsT0k92phLTfKneNdOOHecr3SDfzlGwKfr-1hq5dwqBMst5Feo7pDtHRjbLf8TU9o5-8T_QSg7a3PuQX5Qa6TpFeONxZjE_Jo1FNEZ_dn6fky_uLz_1lcfXxw7o_uypM1Vap4EyxuhS6G009MNBmKFGj1jUIaBquRKsqVNCWzAy8gq7uSqy4GFG3qu30yE_Ju6XuftY7HAy6FNQk9yFvGL5Jr6z8-8fZrbz2t1I0jLOS5wIv7wsE_3XGmOSNn4PLM8uyAdbyBtoDVS6UCT7GgOOxAwN5ECMXMTKLkT_FyC6HXvw52zHyy0QGXi3AHWo_RmPRGTxiWV0jGiGghYPFTIv_p3ub1MFc72eXcpQv0ZjxrDz8XvIf8_8Avcq6sw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Guyer, Anouk</creator><creator>van Doan, Cong</creator><creator>Maurer, Corina</creator><creator>Machado, Ricardo A. R.</creator><creator>Mateo, Pierre</creator><creator>Steinauer, Katja</creator><creator>Kesner, Lucie</creator><creator>Hoch, Günter</creator><creator>Kahmen, Ansgar</creator><creator>Erb, Matthias</creator><creator>Robert, Christelle A. M.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3415-2371</orcidid><orcidid>https://orcid.org/0000-0001-8103-4111</orcidid><orcidid>https://orcid.org/0000-0003-0985-9746</orcidid><orcidid>https://orcid.org/0000-0003-4338-3024</orcidid><orcidid>https://orcid.org/0000-0002-4446-9834</orcidid><orcidid>https://orcid.org/0000-0002-3626-2569</orcidid></search><sort><creationdate>20211101</creationdate><title>Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies</title><author>Guyer, Anouk ; van Doan, Cong ; Maurer, Corina ; Machado, Ricardo A. R. ; Mateo, Pierre ; Steinauer, Katja ; Kesner, Lucie ; Hoch, Günter ; Kahmen, Ansgar ; Erb, Matthias ; Robert, Christelle A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-31a1528b9fc5d10bcd2ebebb5080663a87a4ea0721cd3409592e438feb7a79bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic factors</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biological control</topic><topic>Biological Microscopy</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Climate Change</topic><topic>Climate prediction</topic><topic>Coleoptera - growth &amp; development</topic><topic>Coleoptera - physiology</topic><topic>Corn</topic><topic>Drought</topic><topic>Ecology</topic><topic>Entomology</topic><topic>Entomopathogenic nematodes</topic><topic>Environmental impact</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Food Chain</topic><topic>Herbivores</topic><topic>High temperature</topic><topic>Infectivity</topic><topic>Insects</topic><topic>Larva - growth &amp; development</topic><topic>Larva - physiology</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Nematodes</topic><topic>Plant biomass</topic><topic>Plants</topic><topic>Science &amp; Technology</topic><topic>Soil investigations</topic><topic>Soil moisture</topic><topic>Soil temperature</topic><topic>Strongyloidea - physiology</topic><topic>Sugar</topic><topic>Survival</topic><topic>Tri-trophic interactions</topic><topic>Wilting</topic><topic>Zea mays - growth &amp; development</topic><topic>Zea mays - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guyer, Anouk</creatorcontrib><creatorcontrib>van Doan, Cong</creatorcontrib><creatorcontrib>Maurer, Corina</creatorcontrib><creatorcontrib>Machado, Ricardo A. R.</creatorcontrib><creatorcontrib>Mateo, Pierre</creatorcontrib><creatorcontrib>Steinauer, Katja</creatorcontrib><creatorcontrib>Kesner, Lucie</creatorcontrib><creatorcontrib>Hoch, Günter</creatorcontrib><creatorcontrib>Kahmen, Ansgar</creatorcontrib><creatorcontrib>Erb, Matthias</creatorcontrib><creatorcontrib>Robert, Christelle A. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guyer, Anouk</au><au>van Doan, Cong</au><au>Maurer, Corina</au><au>Machado, Ricardo A. R.</au><au>Mateo, Pierre</au><au>Steinauer, Katja</au><au>Kesner, Lucie</au><au>Hoch, Günter</au><au>Kahmen, Ansgar</au><au>Erb, Matthias</au><au>Robert, Christelle A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies</atitle><jtitle>Journal of chemical ecology</jtitle><stitle>J Chem Ecol</stitle><stitle>J CHEM ECOL</stitle><addtitle>J Chem Ecol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>47</volume><issue>10-11</issue><spage>889</spage><epage>906</epage><pages>889-906</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><abstract>How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO 2 , temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle ( Diabrotica balteata ), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora . Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO 2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO 2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO 2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34415498</pmid><doi>10.1007/s10886-021-01303-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3415-2371</orcidid><orcidid>https://orcid.org/0000-0001-8103-4111</orcidid><orcidid>https://orcid.org/0000-0003-0985-9746</orcidid><orcidid>https://orcid.org/0000-0003-4338-3024</orcidid><orcidid>https://orcid.org/0000-0002-4446-9834</orcidid><orcidid>https://orcid.org/0000-0002-3626-2569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-0331
ispartof Journal of chemical ecology, 2021-11, Vol.47 (10-11), p.889-906
issn 0098-0331
1573-1561
language eng
recordid cdi_pubmed_primary_34415498
source MEDLINE; SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Abiotic factors
Agricultural production
Agriculture
Animals
Biochemistry
Biochemistry & Molecular Biology
Biological control
Biological Microscopy
Biomass
Biomedical and Life Sciences
Carbon dioxide
Climate Change
Climate prediction
Coleoptera - growth & development
Coleoptera - physiology
Corn
Drought
Ecology
Entomology
Entomopathogenic nematodes
Environmental impact
Environmental Sciences & Ecology
Food Chain
Herbivores
High temperature
Infectivity
Insects
Larva - growth & development
Larva - physiology
Leaves
Life Sciences
Life Sciences & Biomedicine
Nematodes
Plant biomass
Plants
Science & Technology
Soil investigations
Soil moisture
Soil temperature
Strongyloidea - physiology
Sugar
Survival
Tri-trophic interactions
Wilting
Zea mays - growth & development
Zea mays - physiology
title Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20Change%20Modulates%20Multitrophic%20Interactions%20Between%20Maize,%20A%20Root%20Herbivore,%20and%20Its%20Enemies&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Guyer,%20Anouk&rft.date=2021-11-01&rft.volume=47&rft.issue=10-11&rft.spage=889&rft.epage=906&rft.pages=889-906&rft.issn=0098-0331&rft.eissn=1573-1561&rft_id=info:doi/10.1007/s10886-021-01303-9&rft_dat=%3Cproquest_pubme%3E2601736073%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601736073&rft_id=info:pmid/34415498&rfr_iscdi=true