Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury

Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action. Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular vision 2021, Vol.27, p.438-456
Hauptverfasser: Li, Xiaoli, Ye, Zhiqiang, Pei, Shuaili, Zheng, Dongliang, Zhu, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue
container_start_page 438
container_title Molecular vision
container_volume 27
creator Li, Xiaoli
Ye, Zhiqiang
Pei, Shuaili
Zheng, Dongliang
Zhu, Lin
description Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action. Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with retinal IR injury were intraperitoneally injected with 22.5 mg/kg minocycline twice a day for 14 days. The control group received the same amount of saline. Subsequently, funduscopic examination, retinal thickness measurement, retinal microvascular morphology, full-field electroretinography (ERG), retinal apoptotic cell count, and remaining retinal ganglion cell (RGC) count were performed. The expression of iNOS, Bax, Bcl2, IL-1 alpha, IL-6, TNF-alpha, caspase-3, GFAP, Iba-1, Hif-1 alpha, and Nrf2 was examined with real-time PCR and western blotting. Results: Minocycline treatment prevented IR-induced rat retinal edema and retinal cells apoptosis at the early stage and alleviated retina atrophy, blood vessel tortuosity, functional photoreceptor damage, and RGC degeneration at the late stage of the IR injury. At the molecular level, minocycline affected retinal gene and protein expression induced by IR. Conclusions: The results suggested that minocycline has a neuroprotective effect on rat retinal IR injury, possibly through anti-inflammation, antiapoptosis, antioxidation, and inhibition of microglial activation.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34295142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559714204</sourcerecordid><originalsourceid>FETCH-LOGICAL-p294t-60dfef1249f7d564339f46cd1c94789354236cabbea0db6f1494ccf7e51e81c33</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAiijOOvoIU3AhSyLVtNoIUbyDqQtclTU80Q5vUNB2ZtzfoOKgrV_khH4eTPzvJHCOBMsQp3_2RZ8nBOC4RIpizYj-ZUUYEx4zMk8d7mLwbvAuggllBClrHlDqd9sY6tVadsZA6m3oZUg_BWNmlZlSv0BuZeRjA62k0ERi7nPz6MNnTshvhaHMukuery6fqJrt7uL6tLu6ygQgWshy1GjQmTOii5TmjVGiWqxYrwYpSUM4IzZVsGpCobXKNmWBK6QI4hhIrShfJ-dfcYWp6aBXY4GVXD9700q9rJ039-8aa1_rFreqSFCIXZRxwuhng3dsEY6j7-CzoOmnBTWNNOOcYx854pCd_6NJNPhbxqUQRm0QsquOfG21X-S47grMv8A6N06MyYBVsGUIoLwihJYkJ4ajL_-vKBBniJ1RusoF-ANaZnoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559714204</pqid></control><display><type>article</type><title>Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Xiaoli ; Ye, Zhiqiang ; Pei, Shuaili ; Zheng, Dongliang ; Zhu, Lin</creator><creatorcontrib>Li, Xiaoli ; Ye, Zhiqiang ; Pei, Shuaili ; Zheng, Dongliang ; Zhu, Lin</creatorcontrib><description>Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action. Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with retinal IR injury were intraperitoneally injected with 22.5 mg/kg minocycline twice a day for 14 days. The control group received the same amount of saline. Subsequently, funduscopic examination, retinal thickness measurement, retinal microvascular morphology, full-field electroretinography (ERG), retinal apoptotic cell count, and remaining retinal ganglion cell (RGC) count were performed. The expression of iNOS, Bax, Bcl2, IL-1 alpha, IL-6, TNF-alpha, caspase-3, GFAP, Iba-1, Hif-1 alpha, and Nrf2 was examined with real-time PCR and western blotting. Results: Minocycline treatment prevented IR-induced rat retinal edema and retinal cells apoptosis at the early stage and alleviated retina atrophy, blood vessel tortuosity, functional photoreceptor damage, and RGC degeneration at the late stage of the IR injury. At the molecular level, minocycline affected retinal gene and protein expression induced by IR. Conclusions: The results suggested that minocycline has a neuroprotective effect on rat retinal IR injury, possibly through anti-inflammation, antiapoptosis, antioxidation, and inhibition of microglial activation.</description><identifier>ISSN: 1090-0535</identifier><identifier>EISSN: 1090-0535</identifier><identifier>PMID: 34295142</identifier><language>eng</language><publisher>ATLANTA: Molecular Vision</publisher><subject>Animals ; Anti-Bacterial Agents - therapeutic use ; Apoptosis ; Apoptosis - drug effects ; Atrophy ; Bax protein ; Biochemistry &amp; Molecular Biology ; Biomarkers - metabolism ; Blotting, Western ; Caspase-3 ; Cell Count ; Cell Survival - drug effects ; Cytology ; Disease Models, Animal ; Edema ; Electroretinograms ; Electroretinography ; Eye Proteins - metabolism ; Glial fibrillary acidic protein ; Hypoxia-inducible factor 1a ; In Situ Nick-End Labeling ; Injections, Intraperitoneal ; Interleukin 6 ; Ischemia ; Life Sciences &amp; Biomedicine ; Male ; Microvasculature ; Minocycline ; Minocycline - therapeutic use ; Neuroprotection ; Neuroprotective Agents - therapeutic use ; Nitric-oxide synthase ; Ophthalmology ; Papilledema - diagnostic imaging ; Papilledema - drug therapy ; Papilledema - metabolism ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Reperfusion ; Reperfusion Injury - diagnostic imaging ; Reperfusion Injury - drug therapy ; Reperfusion Injury - metabolism ; Retina ; Retinal degeneration ; Retinal ganglion cells ; Retinal Ganglion Cells - pathology ; Retinal Vessels - diagnostic imaging ; Retinal Vessels - drug effects ; Retinal Vessels - metabolism ; Science &amp; Technology ; Tomography, Optical Coherence ; Tumor necrosis factor-α ; Western blotting</subject><ispartof>Molecular vision, 2021, Vol.27, p.438-456</ispartof><rights>Copyright © 2021 Molecular Vision.</rights><rights>Copyright Molecular Vision 2021</rights><rights>Copyright © 2021 Molecular Vision. 2021 Molecular Vision</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672238200001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p294t-60dfef1249f7d564339f46cd1c94789354236cabbea0db6f1494ccf7e51e81c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279698/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279698/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,4025,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34295142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Ye, Zhiqiang</creatorcontrib><creatorcontrib>Pei, Shuaili</creatorcontrib><creatorcontrib>Zheng, Dongliang</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><title>Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury</title><title>Molecular vision</title><addtitle>MOL VIS</addtitle><addtitle>Mol Vis</addtitle><description>Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action. Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with retinal IR injury were intraperitoneally injected with 22.5 mg/kg minocycline twice a day for 14 days. The control group received the same amount of saline. Subsequently, funduscopic examination, retinal thickness measurement, retinal microvascular morphology, full-field electroretinography (ERG), retinal apoptotic cell count, and remaining retinal ganglion cell (RGC) count were performed. The expression of iNOS, Bax, Bcl2, IL-1 alpha, IL-6, TNF-alpha, caspase-3, GFAP, Iba-1, Hif-1 alpha, and Nrf2 was examined with real-time PCR and western blotting. Results: Minocycline treatment prevented IR-induced rat retinal edema and retinal cells apoptosis at the early stage and alleviated retina atrophy, blood vessel tortuosity, functional photoreceptor damage, and RGC degeneration at the late stage of the IR injury. At the molecular level, minocycline affected retinal gene and protein expression induced by IR. Conclusions: The results suggested that minocycline has a neuroprotective effect on rat retinal IR injury, possibly through anti-inflammation, antiapoptosis, antioxidation, and inhibition of microglial activation.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Atrophy</subject><subject>Bax protein</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biomarkers - metabolism</subject><subject>Blotting, Western</subject><subject>Caspase-3</subject><subject>Cell Count</subject><subject>Cell Survival - drug effects</subject><subject>Cytology</subject><subject>Disease Models, Animal</subject><subject>Edema</subject><subject>Electroretinograms</subject><subject>Electroretinography</subject><subject>Eye Proteins - metabolism</subject><subject>Glial fibrillary acidic protein</subject><subject>Hypoxia-inducible factor 1a</subject><subject>In Situ Nick-End Labeling</subject><subject>Injections, Intraperitoneal</subject><subject>Interleukin 6</subject><subject>Ischemia</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Male</subject><subject>Microvasculature</subject><subject>Minocycline</subject><subject>Minocycline - therapeutic use</subject><subject>Neuroprotection</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Nitric-oxide synthase</subject><subject>Ophthalmology</subject><subject>Papilledema - diagnostic imaging</subject><subject>Papilledema - drug therapy</subject><subject>Papilledema - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - diagnostic imaging</subject><subject>Reperfusion Injury - drug therapy</subject><subject>Reperfusion Injury - metabolism</subject><subject>Retina</subject><subject>Retinal degeneration</subject><subject>Retinal ganglion cells</subject><subject>Retinal Ganglion Cells - pathology</subject><subject>Retinal Vessels - diagnostic imaging</subject><subject>Retinal Vessels - drug effects</subject><subject>Retinal Vessels - metabolism</subject><subject>Science &amp; Technology</subject><subject>Tomography, Optical Coherence</subject><subject>Tumor necrosis factor-α</subject><subject>Western blotting</subject><issn>1090-0535</issn><issn>1090-0535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqN0ctKxDAUBuAiijOOvoIU3AhSyLVtNoIUbyDqQtclTU80Q5vUNB2ZtzfoOKgrV_khH4eTPzvJHCOBMsQp3_2RZ8nBOC4RIpizYj-ZUUYEx4zMk8d7mLwbvAuggllBClrHlDqd9sY6tVadsZA6m3oZUg_BWNmlZlSv0BuZeRjA62k0ERi7nPz6MNnTshvhaHMukuery6fqJrt7uL6tLu6ygQgWshy1GjQmTOii5TmjVGiWqxYrwYpSUM4IzZVsGpCobXKNmWBK6QI4hhIrShfJ-dfcYWp6aBXY4GVXD9700q9rJ039-8aa1_rFreqSFCIXZRxwuhng3dsEY6j7-CzoOmnBTWNNOOcYx854pCd_6NJNPhbxqUQRm0QsquOfG21X-S47grMv8A6N06MyYBVsGUIoLwihJYkJ4ajL_-vKBBniJ1RusoF-ANaZnoU</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Xiaoli</creator><creator>Ye, Zhiqiang</creator><creator>Pei, Shuaili</creator><creator>Zheng, Dongliang</creator><creator>Zhu, Lin</creator><general>Molecular Vision</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury</title><author>Li, Xiaoli ; Ye, Zhiqiang ; Pei, Shuaili ; Zheng, Dongliang ; Zhu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p294t-60dfef1249f7d564339f46cd1c94789354236cabbea0db6f1494ccf7e51e81c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Atrophy</topic><topic>Bax protein</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biomarkers - metabolism</topic><topic>Blotting, Western</topic><topic>Caspase-3</topic><topic>Cell Count</topic><topic>Cell Survival - drug effects</topic><topic>Cytology</topic><topic>Disease Models, Animal</topic><topic>Edema</topic><topic>Electroretinograms</topic><topic>Electroretinography</topic><topic>Eye Proteins - metabolism</topic><topic>Glial fibrillary acidic protein</topic><topic>Hypoxia-inducible factor 1a</topic><topic>In Situ Nick-End Labeling</topic><topic>Injections, Intraperitoneal</topic><topic>Interleukin 6</topic><topic>Ischemia</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Male</topic><topic>Microvasculature</topic><topic>Minocycline</topic><topic>Minocycline - therapeutic use</topic><topic>Neuroprotection</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Nitric-oxide synthase</topic><topic>Ophthalmology</topic><topic>Papilledema - diagnostic imaging</topic><topic>Papilledema - drug therapy</topic><topic>Papilledema - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - diagnostic imaging</topic><topic>Reperfusion Injury - drug therapy</topic><topic>Reperfusion Injury - metabolism</topic><topic>Retina</topic><topic>Retinal degeneration</topic><topic>Retinal ganglion cells</topic><topic>Retinal Ganglion Cells - pathology</topic><topic>Retinal Vessels - diagnostic imaging</topic><topic>Retinal Vessels - drug effects</topic><topic>Retinal Vessels - metabolism</topic><topic>Science &amp; Technology</topic><topic>Tomography, Optical Coherence</topic><topic>Tumor necrosis factor-α</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Ye, Zhiqiang</creatorcontrib><creatorcontrib>Pei, Shuaili</creatorcontrib><creatorcontrib>Zheng, Dongliang</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaoli</au><au>Ye, Zhiqiang</au><au>Pei, Shuaili</au><au>Zheng, Dongliang</au><au>Zhu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury</atitle><jtitle>Molecular vision</jtitle><stitle>MOL VIS</stitle><addtitle>Mol Vis</addtitle><date>2021</date><risdate>2021</risdate><volume>27</volume><spage>438</spage><epage>456</epage><pages>438-456</pages><issn>1090-0535</issn><eissn>1090-0535</eissn><abstract>Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action. Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with retinal IR injury were intraperitoneally injected with 22.5 mg/kg minocycline twice a day for 14 days. The control group received the same amount of saline. Subsequently, funduscopic examination, retinal thickness measurement, retinal microvascular morphology, full-field electroretinography (ERG), retinal apoptotic cell count, and remaining retinal ganglion cell (RGC) count were performed. The expression of iNOS, Bax, Bcl2, IL-1 alpha, IL-6, TNF-alpha, caspase-3, GFAP, Iba-1, Hif-1 alpha, and Nrf2 was examined with real-time PCR and western blotting. Results: Minocycline treatment prevented IR-induced rat retinal edema and retinal cells apoptosis at the early stage and alleviated retina atrophy, blood vessel tortuosity, functional photoreceptor damage, and RGC degeneration at the late stage of the IR injury. At the molecular level, minocycline affected retinal gene and protein expression induced by IR. Conclusions: The results suggested that minocycline has a neuroprotective effect on rat retinal IR injury, possibly through anti-inflammation, antiapoptosis, antioxidation, and inhibition of microglial activation.</abstract><cop>ATLANTA</cop><pub>Molecular Vision</pub><pmid>34295142</pmid><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1090-0535
ispartof Molecular vision, 2021, Vol.27, p.438-456
issn 1090-0535
1090-0535
language eng
recordid cdi_pubmed_primary_34295142
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Anti-Bacterial Agents - therapeutic use
Apoptosis
Apoptosis - drug effects
Atrophy
Bax protein
Biochemistry & Molecular Biology
Biomarkers - metabolism
Blotting, Western
Caspase-3
Cell Count
Cell Survival - drug effects
Cytology
Disease Models, Animal
Edema
Electroretinograms
Electroretinography
Eye Proteins - metabolism
Glial fibrillary acidic protein
Hypoxia-inducible factor 1a
In Situ Nick-End Labeling
Injections, Intraperitoneal
Interleukin 6
Ischemia
Life Sciences & Biomedicine
Male
Microvasculature
Minocycline
Minocycline - therapeutic use
Neuroprotection
Neuroprotective Agents - therapeutic use
Nitric-oxide synthase
Ophthalmology
Papilledema - diagnostic imaging
Papilledema - drug therapy
Papilledema - metabolism
Rats
Rats, Sprague-Dawley
Real-Time Polymerase Chain Reaction
Reperfusion
Reperfusion Injury - diagnostic imaging
Reperfusion Injury - drug therapy
Reperfusion Injury - metabolism
Retina
Retinal degeneration
Retinal ganglion cells
Retinal Ganglion Cells - pathology
Retinal Vessels - diagnostic imaging
Retinal Vessels - drug effects
Retinal Vessels - metabolism
Science & Technology
Tomography, Optical Coherence
Tumor necrosis factor-α
Western blotting
title Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroprotective%20effect%20of%20minocycline%20on%20rat%20retinal%20ischemia-reperfusion%20injury&rft.jtitle=Molecular%20vision&rft.au=Li,%20Xiaoli&rft.date=2021&rft.volume=27&rft.spage=438&rft.epage=456&rft.pages=438-456&rft.issn=1090-0535&rft.eissn=1090-0535&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2559714204%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559714204&rft_id=info:pmid/34295142&rfr_iscdi=true