Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury
Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action. Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with re...
Gespeichert in:
Veröffentlicht in: | Molecular vision 2021, Vol.27, p.438-456 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | |
container_start_page | 438 |
container_title | Molecular vision |
container_volume | 27 |
creator | Li, Xiaoli Ye, Zhiqiang Pei, Shuaili Zheng, Dongliang Zhu, Lin |
description | Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action.
Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with retinal IR injury were intraperitoneally injected with 22.5 mg/kg minocycline twice a day for 14 days. The control group received the same amount of saline. Subsequently, funduscopic examination, retinal thickness measurement, retinal microvascular morphology, full-field electroretinography (ERG), retinal apoptotic cell count, and remaining retinal ganglion cell (RGC) count were performed. The expression of iNOS, Bax, Bcl2, IL-1 alpha, IL-6, TNF-alpha, caspase-3, GFAP, Iba-1, Hif-1 alpha, and Nrf2 was examined with real-time PCR and western blotting.
Results: Minocycline treatment prevented IR-induced rat retinal edema and retinal cells apoptosis at the early stage and alleviated retina atrophy, blood vessel tortuosity, functional photoreceptor damage, and RGC degeneration at the late stage of the IR injury. At the molecular level, minocycline affected retinal gene and protein expression induced by IR.
Conclusions: The results suggested that minocycline has a neuroprotective effect on rat retinal IR injury, possibly through anti-inflammation, antiapoptosis, antioxidation, and inhibition of microglial activation. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34295142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559714204</sourcerecordid><originalsourceid>FETCH-LOGICAL-p294t-60dfef1249f7d564339f46cd1c94789354236cabbea0db6f1494ccf7e51e81c33</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAiijOOvoIU3AhSyLVtNoIUbyDqQtclTU80Q5vUNB2ZtzfoOKgrV_khH4eTPzvJHCOBMsQp3_2RZ8nBOC4RIpizYj-ZUUYEx4zMk8d7mLwbvAuggllBClrHlDqd9sY6tVadsZA6m3oZUg_BWNmlZlSv0BuZeRjA62k0ERi7nPz6MNnTshvhaHMukuery6fqJrt7uL6tLu6ygQgWshy1GjQmTOii5TmjVGiWqxYrwYpSUM4IzZVsGpCobXKNmWBK6QI4hhIrShfJ-dfcYWp6aBXY4GVXD9700q9rJ039-8aa1_rFreqSFCIXZRxwuhng3dsEY6j7-CzoOmnBTWNNOOcYx854pCd_6NJNPhbxqUQRm0QsquOfG21X-S47grMv8A6N06MyYBVsGUIoLwihJYkJ4ajL_-vKBBniJ1RusoF-ANaZnoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559714204</pqid></control><display><type>article</type><title>Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Xiaoli ; Ye, Zhiqiang ; Pei, Shuaili ; Zheng, Dongliang ; Zhu, Lin</creator><creatorcontrib>Li, Xiaoli ; Ye, Zhiqiang ; Pei, Shuaili ; Zheng, Dongliang ; Zhu, Lin</creatorcontrib><description>Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action.
Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with retinal IR injury were intraperitoneally injected with 22.5 mg/kg minocycline twice a day for 14 days. The control group received the same amount of saline. Subsequently, funduscopic examination, retinal thickness measurement, retinal microvascular morphology, full-field electroretinography (ERG), retinal apoptotic cell count, and remaining retinal ganglion cell (RGC) count were performed. The expression of iNOS, Bax, Bcl2, IL-1 alpha, IL-6, TNF-alpha, caspase-3, GFAP, Iba-1, Hif-1 alpha, and Nrf2 was examined with real-time PCR and western blotting.
Results: Minocycline treatment prevented IR-induced rat retinal edema and retinal cells apoptosis at the early stage and alleviated retina atrophy, blood vessel tortuosity, functional photoreceptor damage, and RGC degeneration at the late stage of the IR injury. At the molecular level, minocycline affected retinal gene and protein expression induced by IR.
Conclusions: The results suggested that minocycline has a neuroprotective effect on rat retinal IR injury, possibly through anti-inflammation, antiapoptosis, antioxidation, and inhibition of microglial activation.</description><identifier>ISSN: 1090-0535</identifier><identifier>EISSN: 1090-0535</identifier><identifier>PMID: 34295142</identifier><language>eng</language><publisher>ATLANTA: Molecular Vision</publisher><subject>Animals ; Anti-Bacterial Agents - therapeutic use ; Apoptosis ; Apoptosis - drug effects ; Atrophy ; Bax protein ; Biochemistry & Molecular Biology ; Biomarkers - metabolism ; Blotting, Western ; Caspase-3 ; Cell Count ; Cell Survival - drug effects ; Cytology ; Disease Models, Animal ; Edema ; Electroretinograms ; Electroretinography ; Eye Proteins - metabolism ; Glial fibrillary acidic protein ; Hypoxia-inducible factor 1a ; In Situ Nick-End Labeling ; Injections, Intraperitoneal ; Interleukin 6 ; Ischemia ; Life Sciences & Biomedicine ; Male ; Microvasculature ; Minocycline ; Minocycline - therapeutic use ; Neuroprotection ; Neuroprotective Agents - therapeutic use ; Nitric-oxide synthase ; Ophthalmology ; Papilledema - diagnostic imaging ; Papilledema - drug therapy ; Papilledema - metabolism ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Reperfusion ; Reperfusion Injury - diagnostic imaging ; Reperfusion Injury - drug therapy ; Reperfusion Injury - metabolism ; Retina ; Retinal degeneration ; Retinal ganglion cells ; Retinal Ganglion Cells - pathology ; Retinal Vessels - diagnostic imaging ; Retinal Vessels - drug effects ; Retinal Vessels - metabolism ; Science & Technology ; Tomography, Optical Coherence ; Tumor necrosis factor-α ; Western blotting</subject><ispartof>Molecular vision, 2021, Vol.27, p.438-456</ispartof><rights>Copyright © 2021 Molecular Vision.</rights><rights>Copyright Molecular Vision 2021</rights><rights>Copyright © 2021 Molecular Vision. 2021 Molecular Vision</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672238200001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p294t-60dfef1249f7d564339f46cd1c94789354236cabbea0db6f1494ccf7e51e81c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279698/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279698/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,4025,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34295142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Ye, Zhiqiang</creatorcontrib><creatorcontrib>Pei, Shuaili</creatorcontrib><creatorcontrib>Zheng, Dongliang</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><title>Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury</title><title>Molecular vision</title><addtitle>MOL VIS</addtitle><addtitle>Mol Vis</addtitle><description>Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action.
Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with retinal IR injury were intraperitoneally injected with 22.5 mg/kg minocycline twice a day for 14 days. The control group received the same amount of saline. Subsequently, funduscopic examination, retinal thickness measurement, retinal microvascular morphology, full-field electroretinography (ERG), retinal apoptotic cell count, and remaining retinal ganglion cell (RGC) count were performed. The expression of iNOS, Bax, Bcl2, IL-1 alpha, IL-6, TNF-alpha, caspase-3, GFAP, Iba-1, Hif-1 alpha, and Nrf2 was examined with real-time PCR and western blotting.
Results: Minocycline treatment prevented IR-induced rat retinal edema and retinal cells apoptosis at the early stage and alleviated retina atrophy, blood vessel tortuosity, functional photoreceptor damage, and RGC degeneration at the late stage of the IR injury. At the molecular level, minocycline affected retinal gene and protein expression induced by IR.
Conclusions: The results suggested that minocycline has a neuroprotective effect on rat retinal IR injury, possibly through anti-inflammation, antiapoptosis, antioxidation, and inhibition of microglial activation.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Atrophy</subject><subject>Bax protein</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biomarkers - metabolism</subject><subject>Blotting, Western</subject><subject>Caspase-3</subject><subject>Cell Count</subject><subject>Cell Survival - drug effects</subject><subject>Cytology</subject><subject>Disease Models, Animal</subject><subject>Edema</subject><subject>Electroretinograms</subject><subject>Electroretinography</subject><subject>Eye Proteins - metabolism</subject><subject>Glial fibrillary acidic protein</subject><subject>Hypoxia-inducible factor 1a</subject><subject>In Situ Nick-End Labeling</subject><subject>Injections, Intraperitoneal</subject><subject>Interleukin 6</subject><subject>Ischemia</subject><subject>Life Sciences & Biomedicine</subject><subject>Male</subject><subject>Microvasculature</subject><subject>Minocycline</subject><subject>Minocycline - therapeutic use</subject><subject>Neuroprotection</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Nitric-oxide synthase</subject><subject>Ophthalmology</subject><subject>Papilledema - diagnostic imaging</subject><subject>Papilledema - drug therapy</subject><subject>Papilledema - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - diagnostic imaging</subject><subject>Reperfusion Injury - drug therapy</subject><subject>Reperfusion Injury - metabolism</subject><subject>Retina</subject><subject>Retinal degeneration</subject><subject>Retinal ganglion cells</subject><subject>Retinal Ganglion Cells - pathology</subject><subject>Retinal Vessels - diagnostic imaging</subject><subject>Retinal Vessels - drug effects</subject><subject>Retinal Vessels - metabolism</subject><subject>Science & Technology</subject><subject>Tomography, Optical Coherence</subject><subject>Tumor necrosis factor-α</subject><subject>Western blotting</subject><issn>1090-0535</issn><issn>1090-0535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqN0ctKxDAUBuAiijOOvoIU3AhSyLVtNoIUbyDqQtclTU80Q5vUNB2ZtzfoOKgrV_khH4eTPzvJHCOBMsQp3_2RZ8nBOC4RIpizYj-ZUUYEx4zMk8d7mLwbvAuggllBClrHlDqd9sY6tVadsZA6m3oZUg_BWNmlZlSv0BuZeRjA62k0ERi7nPz6MNnTshvhaHMukuery6fqJrt7uL6tLu6ygQgWshy1GjQmTOii5TmjVGiWqxYrwYpSUM4IzZVsGpCobXKNmWBK6QI4hhIrShfJ-dfcYWp6aBXY4GVXD9700q9rJ039-8aa1_rFreqSFCIXZRxwuhng3dsEY6j7-CzoOmnBTWNNOOcYx854pCd_6NJNPhbxqUQRm0QsquOfG21X-S47grMv8A6N06MyYBVsGUIoLwihJYkJ4ajL_-vKBBniJ1RusoF-ANaZnoU</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Xiaoli</creator><creator>Ye, Zhiqiang</creator><creator>Pei, Shuaili</creator><creator>Zheng, Dongliang</creator><creator>Zhu, Lin</creator><general>Molecular Vision</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury</title><author>Li, Xiaoli ; Ye, Zhiqiang ; Pei, Shuaili ; Zheng, Dongliang ; Zhu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p294t-60dfef1249f7d564339f46cd1c94789354236cabbea0db6f1494ccf7e51e81c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Atrophy</topic><topic>Bax protein</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biomarkers - metabolism</topic><topic>Blotting, Western</topic><topic>Caspase-3</topic><topic>Cell Count</topic><topic>Cell Survival - drug effects</topic><topic>Cytology</topic><topic>Disease Models, Animal</topic><topic>Edema</topic><topic>Electroretinograms</topic><topic>Electroretinography</topic><topic>Eye Proteins - metabolism</topic><topic>Glial fibrillary acidic protein</topic><topic>Hypoxia-inducible factor 1a</topic><topic>In Situ Nick-End Labeling</topic><topic>Injections, Intraperitoneal</topic><topic>Interleukin 6</topic><topic>Ischemia</topic><topic>Life Sciences & Biomedicine</topic><topic>Male</topic><topic>Microvasculature</topic><topic>Minocycline</topic><topic>Minocycline - therapeutic use</topic><topic>Neuroprotection</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Nitric-oxide synthase</topic><topic>Ophthalmology</topic><topic>Papilledema - diagnostic imaging</topic><topic>Papilledema - drug therapy</topic><topic>Papilledema - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - diagnostic imaging</topic><topic>Reperfusion Injury - drug therapy</topic><topic>Reperfusion Injury - metabolism</topic><topic>Retina</topic><topic>Retinal degeneration</topic><topic>Retinal ganglion cells</topic><topic>Retinal Ganglion Cells - pathology</topic><topic>Retinal Vessels - diagnostic imaging</topic><topic>Retinal Vessels - drug effects</topic><topic>Retinal Vessels - metabolism</topic><topic>Science & Technology</topic><topic>Tomography, Optical Coherence</topic><topic>Tumor necrosis factor-α</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Ye, Zhiqiang</creatorcontrib><creatorcontrib>Pei, Shuaili</creatorcontrib><creatorcontrib>Zheng, Dongliang</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaoli</au><au>Ye, Zhiqiang</au><au>Pei, Shuaili</au><au>Zheng, Dongliang</au><au>Zhu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury</atitle><jtitle>Molecular vision</jtitle><stitle>MOL VIS</stitle><addtitle>Mol Vis</addtitle><date>2021</date><risdate>2021</risdate><volume>27</volume><spage>438</spage><epage>456</epage><pages>438-456</pages><issn>1090-0535</issn><eissn>1090-0535</eissn><abstract>Purpose: To examine the neuroprotective effect of minocycline on retinal ischemia-reperfusion (IR) injury in rats and investigate its possible mechanism of action.
Methods: Retinal IR injury was established by increasing the intraocular pressure in rats up to 110 mmHg for 60 min. The animals with retinal IR injury were intraperitoneally injected with 22.5 mg/kg minocycline twice a day for 14 days. The control group received the same amount of saline. Subsequently, funduscopic examination, retinal thickness measurement, retinal microvascular morphology, full-field electroretinography (ERG), retinal apoptotic cell count, and remaining retinal ganglion cell (RGC) count were performed. The expression of iNOS, Bax, Bcl2, IL-1 alpha, IL-6, TNF-alpha, caspase-3, GFAP, Iba-1, Hif-1 alpha, and Nrf2 was examined with real-time PCR and western blotting.
Results: Minocycline treatment prevented IR-induced rat retinal edema and retinal cells apoptosis at the early stage and alleviated retina atrophy, blood vessel tortuosity, functional photoreceptor damage, and RGC degeneration at the late stage of the IR injury. At the molecular level, minocycline affected retinal gene and protein expression induced by IR.
Conclusions: The results suggested that minocycline has a neuroprotective effect on rat retinal IR injury, possibly through anti-inflammation, antiapoptosis, antioxidation, and inhibition of microglial activation.</abstract><cop>ATLANTA</cop><pub>Molecular Vision</pub><pmid>34295142</pmid><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-0535 |
ispartof | Molecular vision, 2021, Vol.27, p.438-456 |
issn | 1090-0535 1090-0535 |
language | eng |
recordid | cdi_pubmed_primary_34295142 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Anti-Bacterial Agents - therapeutic use Apoptosis Apoptosis - drug effects Atrophy Bax protein Biochemistry & Molecular Biology Biomarkers - metabolism Blotting, Western Caspase-3 Cell Count Cell Survival - drug effects Cytology Disease Models, Animal Edema Electroretinograms Electroretinography Eye Proteins - metabolism Glial fibrillary acidic protein Hypoxia-inducible factor 1a In Situ Nick-End Labeling Injections, Intraperitoneal Interleukin 6 Ischemia Life Sciences & Biomedicine Male Microvasculature Minocycline Minocycline - therapeutic use Neuroprotection Neuroprotective Agents - therapeutic use Nitric-oxide synthase Ophthalmology Papilledema - diagnostic imaging Papilledema - drug therapy Papilledema - metabolism Rats Rats, Sprague-Dawley Real-Time Polymerase Chain Reaction Reperfusion Reperfusion Injury - diagnostic imaging Reperfusion Injury - drug therapy Reperfusion Injury - metabolism Retina Retinal degeneration Retinal ganglion cells Retinal Ganglion Cells - pathology Retinal Vessels - diagnostic imaging Retinal Vessels - drug effects Retinal Vessels - metabolism Science & Technology Tomography, Optical Coherence Tumor necrosis factor-α Western blotting |
title | Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroprotective%20effect%20of%20minocycline%20on%20rat%20retinal%20ischemia-reperfusion%20injury&rft.jtitle=Molecular%20vision&rft.au=Li,%20Xiaoli&rft.date=2021&rft.volume=27&rft.spage=438&rft.epage=456&rft.pages=438-456&rft.issn=1090-0535&rft.eissn=1090-0535&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2559714204%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559714204&rft_id=info:pmid/34295142&rfr_iscdi=true |