Stability limits of a red Carthamin-cellulose complex as a potential food colourant
This study covers aspects of stability and colouration of Carthamin- a unique red chalcone extracted from Carthamus tinctorius L. Due to its fast degradation in aqueous solutions even at room temperature, Carthamin has no significant use in the food industry. Therefore, obtaining Carthamin in a stab...
Gespeichert in:
Veröffentlicht in: | Food & function 2021-09, Vol.12 (17), p.837-843 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 843 |
---|---|
container_issue | 17 |
container_start_page | 837 |
container_title | Food & function |
container_volume | 12 |
creator | Baerle, Alexei Savcenco, Alexandra Tatarov, Pavel Fetea, Florinela Ivanova, Raisa Radu, Oxana |
description | This study covers aspects of stability and colouration of Carthamin- a unique red chalcone extracted from
Carthamus tinctorius
L. Due to its fast degradation in aqueous solutions even at room temperature, Carthamin has no significant use in the food industry. Therefore, obtaining Carthamin in a stable form is of high interest. Comparing UV-Vis spectra of Carthamin solutions and RGB-data of Carthamin-cellulose complex in the wet state showed a predominant formation of stable Carthamin conformation on the cellulose phase. It was determined that the wet Carthamin-cellulose complex acquires a stable and rich magenta colour in the pH range of 1-5. In aqueous suspensions with pH >6, the Carthamin-cellulose complex gets a purple colour, which is absolutely uncharacteristic for pure Carthamin in an aqueous solution. IR spectra indicate the fixation of Carthamin molecules on the cellulose, which presumably causes hindrance of free internal rotation of Carthamin molecules in the cellulose phase. The reduction of water activity in the cellulosic phase represents an additional stabilizing factor. As a result, the Carthamin-cellulose complex withstands heating up to 70 °C for 15 min in the pH range of 2-5, showing up to 90% of stability. These conditions are typical for the preparation of a wide range of food products. High stability in a food-like environment and magenta colour make the Carthamin-cellulose complex a prospective natural food dye.
The purple (red) colour of the Carthamin-cellulose complex (CCC) in wet state is stable at pH 2-6 and at temperatures of 60-70 °C for 15-30 min. These conditions correspond to food preparation, making CCC a promising food colour. |
doi_str_mv | 10.1039/d1fo01376a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34279018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566254950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-71509a58346c98c800b1639670627a29bd46ec2484ea66f99888b7c701f961e63</originalsourceid><addsrcrecordid>eNpd0c1LwzAYBvAgihtzF-9KwYsI1Xy0-TiO6VQY7DAFbyVNU-xIm5mk4P57M_chmEsC74-XhycAXCJ4jyARDxWqLUSEUXkChhhmOKU5_Dg9vDNBB2Ds_QrGQ4Tggp-DAckwExDxIVgugywb04RNYpq2CT6xdSITp6tkKl34lG3TpUob0xvrdaJsuzb6O5E-orUNuguNNEltbRVnxvZOduECnNXSeD3e3yPwPnt6m76k88Xz63QyTxUhLKQM5VDInJOMKsEVh7BElAjKIMVMYlFWGdUKZzzTktI6Zue8ZIpBVAuKNCUjcLvbu3b2q9c-FG3jt1llp23vC5znBBMiEI705h9dxaxdTBcVpTjPRA6jutsp5az3TtfF2jWtdJsCwWLbdvGIZovfticRX-9X9mWrqyM9dBvB1Q44r47Tv-8iP2rwgZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566254950</pqid></control><display><type>article</type><title>Stability limits of a red Carthamin-cellulose complex as a potential food colourant</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><creator>Baerle, Alexei ; Savcenco, Alexandra ; Tatarov, Pavel ; Fetea, Florinela ; Ivanova, Raisa ; Radu, Oxana</creator><creatorcontrib>Baerle, Alexei ; Savcenco, Alexandra ; Tatarov, Pavel ; Fetea, Florinela ; Ivanova, Raisa ; Radu, Oxana</creatorcontrib><description>This study covers aspects of stability and colouration of Carthamin- a unique red chalcone extracted from
Carthamus tinctorius
L. Due to its fast degradation in aqueous solutions even at room temperature, Carthamin has no significant use in the food industry. Therefore, obtaining Carthamin in a stable form is of high interest. Comparing UV-Vis spectra of Carthamin solutions and RGB-data of Carthamin-cellulose complex in the wet state showed a predominant formation of stable Carthamin conformation on the cellulose phase. It was determined that the wet Carthamin-cellulose complex acquires a stable and rich magenta colour in the pH range of 1-5. In aqueous suspensions with pH >6, the Carthamin-cellulose complex gets a purple colour, which is absolutely uncharacteristic for pure Carthamin in an aqueous solution. IR spectra indicate the fixation of Carthamin molecules on the cellulose, which presumably causes hindrance of free internal rotation of Carthamin molecules in the cellulose phase. The reduction of water activity in the cellulosic phase represents an additional stabilizing factor. As a result, the Carthamin-cellulose complex withstands heating up to 70 °C for 15 min in the pH range of 2-5, showing up to 90% of stability. These conditions are typical for the preparation of a wide range of food products. High stability in a food-like environment and magenta colour make the Carthamin-cellulose complex a prospective natural food dye.
The purple (red) colour of the Carthamin-cellulose complex (CCC) in wet state is stable at pH 2-6 and at temperatures of 60-70 °C for 15-30 min. These conditions correspond to food preparation, making CCC a promising food colour.</description><identifier>ISSN: 2042-6496</identifier><identifier>EISSN: 2042-650X</identifier><identifier>DOI: 10.1039/d1fo01376a</identifier><identifier>PMID: 34279018</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aqueous solutions ; Carthamin ; Carthamus tinctorius - chemistry ; Cellulose ; Cellulose - chemistry ; Chalcone - analogs & derivatives ; Chalcone - chemistry ; Color ; Conformation ; Food ; Food Coloring Agents - chemistry ; Food dyes ; Food industry ; Glucosides - chemistry ; Infrared spectroscopy ; Molecular Conformation ; Natural & organic foods ; pH effects ; Plant Extracts - chemistry ; Room temperature ; Spectrophotometry, Infrared ; Stability ; Water activity</subject><ispartof>Food & function, 2021-09, Vol.12 (17), p.837-843</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-71509a58346c98c800b1639670627a29bd46ec2484ea66f99888b7c701f961e63</citedby><cites>FETCH-LOGICAL-c337t-71509a58346c98c800b1639670627a29bd46ec2484ea66f99888b7c701f961e63</cites><orcidid>0000-0002-1962-3959 ; 0000-0001-6392-9579 ; 0000-0002-2554-2039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34279018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baerle, Alexei</creatorcontrib><creatorcontrib>Savcenco, Alexandra</creatorcontrib><creatorcontrib>Tatarov, Pavel</creatorcontrib><creatorcontrib>Fetea, Florinela</creatorcontrib><creatorcontrib>Ivanova, Raisa</creatorcontrib><creatorcontrib>Radu, Oxana</creatorcontrib><title>Stability limits of a red Carthamin-cellulose complex as a potential food colourant</title><title>Food & function</title><addtitle>Food Funct</addtitle><description>This study covers aspects of stability and colouration of Carthamin- a unique red chalcone extracted from
Carthamus tinctorius
L. Due to its fast degradation in aqueous solutions even at room temperature, Carthamin has no significant use in the food industry. Therefore, obtaining Carthamin in a stable form is of high interest. Comparing UV-Vis spectra of Carthamin solutions and RGB-data of Carthamin-cellulose complex in the wet state showed a predominant formation of stable Carthamin conformation on the cellulose phase. It was determined that the wet Carthamin-cellulose complex acquires a stable and rich magenta colour in the pH range of 1-5. In aqueous suspensions with pH >6, the Carthamin-cellulose complex gets a purple colour, which is absolutely uncharacteristic for pure Carthamin in an aqueous solution. IR spectra indicate the fixation of Carthamin molecules on the cellulose, which presumably causes hindrance of free internal rotation of Carthamin molecules in the cellulose phase. The reduction of water activity in the cellulosic phase represents an additional stabilizing factor. As a result, the Carthamin-cellulose complex withstands heating up to 70 °C for 15 min in the pH range of 2-5, showing up to 90% of stability. These conditions are typical for the preparation of a wide range of food products. High stability in a food-like environment and magenta colour make the Carthamin-cellulose complex a prospective natural food dye.
The purple (red) colour of the Carthamin-cellulose complex (CCC) in wet state is stable at pH 2-6 and at temperatures of 60-70 °C for 15-30 min. These conditions correspond to food preparation, making CCC a promising food colour.</description><subject>Aqueous solutions</subject><subject>Carthamin</subject><subject>Carthamus tinctorius - chemistry</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Chalcone - analogs & derivatives</subject><subject>Chalcone - chemistry</subject><subject>Color</subject><subject>Conformation</subject><subject>Food</subject><subject>Food Coloring Agents - chemistry</subject><subject>Food dyes</subject><subject>Food industry</subject><subject>Glucosides - chemistry</subject><subject>Infrared spectroscopy</subject><subject>Molecular Conformation</subject><subject>Natural & organic foods</subject><subject>pH effects</subject><subject>Plant Extracts - chemistry</subject><subject>Room temperature</subject><subject>Spectrophotometry, Infrared</subject><subject>Stability</subject><subject>Water activity</subject><issn>2042-6496</issn><issn>2042-650X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c1LwzAYBvAgihtzF-9KwYsI1Xy0-TiO6VQY7DAFbyVNU-xIm5mk4P57M_chmEsC74-XhycAXCJ4jyARDxWqLUSEUXkChhhmOKU5_Dg9vDNBB2Ds_QrGQ4Tggp-DAckwExDxIVgugywb04RNYpq2CT6xdSITp6tkKl34lG3TpUob0xvrdaJsuzb6O5E-orUNuguNNEltbRVnxvZOduECnNXSeD3e3yPwPnt6m76k88Xz63QyTxUhLKQM5VDInJOMKsEVh7BElAjKIMVMYlFWGdUKZzzTktI6Zue8ZIpBVAuKNCUjcLvbu3b2q9c-FG3jt1llp23vC5znBBMiEI705h9dxaxdTBcVpTjPRA6jutsp5az3TtfF2jWtdJsCwWLbdvGIZovfticRX-9X9mWrqyM9dBvB1Q44r47Tv-8iP2rwgZY</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>Baerle, Alexei</creator><creator>Savcenco, Alexandra</creator><creator>Tatarov, Pavel</creator><creator>Fetea, Florinela</creator><creator>Ivanova, Raisa</creator><creator>Radu, Oxana</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7T7</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1962-3959</orcidid><orcidid>https://orcid.org/0000-0001-6392-9579</orcidid><orcidid>https://orcid.org/0000-0002-2554-2039</orcidid></search><sort><creationdate>20210907</creationdate><title>Stability limits of a red Carthamin-cellulose complex as a potential food colourant</title><author>Baerle, Alexei ; Savcenco, Alexandra ; Tatarov, Pavel ; Fetea, Florinela ; Ivanova, Raisa ; Radu, Oxana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-71509a58346c98c800b1639670627a29bd46ec2484ea66f99888b7c701f961e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous solutions</topic><topic>Carthamin</topic><topic>Carthamus tinctorius - chemistry</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Chalcone - analogs & derivatives</topic><topic>Chalcone - chemistry</topic><topic>Color</topic><topic>Conformation</topic><topic>Food</topic><topic>Food Coloring Agents - chemistry</topic><topic>Food dyes</topic><topic>Food industry</topic><topic>Glucosides - chemistry</topic><topic>Infrared spectroscopy</topic><topic>Molecular Conformation</topic><topic>Natural & organic foods</topic><topic>pH effects</topic><topic>Plant Extracts - chemistry</topic><topic>Room temperature</topic><topic>Spectrophotometry, Infrared</topic><topic>Stability</topic><topic>Water activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baerle, Alexei</creatorcontrib><creatorcontrib>Savcenco, Alexandra</creatorcontrib><creatorcontrib>Tatarov, Pavel</creatorcontrib><creatorcontrib>Fetea, Florinela</creatorcontrib><creatorcontrib>Ivanova, Raisa</creatorcontrib><creatorcontrib>Radu, Oxana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Food & function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baerle, Alexei</au><au>Savcenco, Alexandra</au><au>Tatarov, Pavel</au><au>Fetea, Florinela</au><au>Ivanova, Raisa</au><au>Radu, Oxana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability limits of a red Carthamin-cellulose complex as a potential food colourant</atitle><jtitle>Food & function</jtitle><addtitle>Food Funct</addtitle><date>2021-09-07</date><risdate>2021</risdate><volume>12</volume><issue>17</issue><spage>837</spage><epage>843</epage><pages>837-843</pages><issn>2042-6496</issn><eissn>2042-650X</eissn><abstract>This study covers aspects of stability and colouration of Carthamin- a unique red chalcone extracted from
Carthamus tinctorius
L. Due to its fast degradation in aqueous solutions even at room temperature, Carthamin has no significant use in the food industry. Therefore, obtaining Carthamin in a stable form is of high interest. Comparing UV-Vis spectra of Carthamin solutions and RGB-data of Carthamin-cellulose complex in the wet state showed a predominant formation of stable Carthamin conformation on the cellulose phase. It was determined that the wet Carthamin-cellulose complex acquires a stable and rich magenta colour in the pH range of 1-5. In aqueous suspensions with pH >6, the Carthamin-cellulose complex gets a purple colour, which is absolutely uncharacteristic for pure Carthamin in an aqueous solution. IR spectra indicate the fixation of Carthamin molecules on the cellulose, which presumably causes hindrance of free internal rotation of Carthamin molecules in the cellulose phase. The reduction of water activity in the cellulosic phase represents an additional stabilizing factor. As a result, the Carthamin-cellulose complex withstands heating up to 70 °C for 15 min in the pH range of 2-5, showing up to 90% of stability. These conditions are typical for the preparation of a wide range of food products. High stability in a food-like environment and magenta colour make the Carthamin-cellulose complex a prospective natural food dye.
The purple (red) colour of the Carthamin-cellulose complex (CCC) in wet state is stable at pH 2-6 and at temperatures of 60-70 °C for 15-30 min. These conditions correspond to food preparation, making CCC a promising food colour.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34279018</pmid><doi>10.1039/d1fo01376a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1962-3959</orcidid><orcidid>https://orcid.org/0000-0001-6392-9579</orcidid><orcidid>https://orcid.org/0000-0002-2554-2039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2042-6496 |
ispartof | Food & function, 2021-09, Vol.12 (17), p.837-843 |
issn | 2042-6496 2042-650X |
language | eng |
recordid | cdi_pubmed_primary_34279018 |
source | MEDLINE; Royal Society Of Chemistry Journals |
subjects | Aqueous solutions Carthamin Carthamus tinctorius - chemistry Cellulose Cellulose - chemistry Chalcone - analogs & derivatives Chalcone - chemistry Color Conformation Food Food Coloring Agents - chemistry Food dyes Food industry Glucosides - chemistry Infrared spectroscopy Molecular Conformation Natural & organic foods pH effects Plant Extracts - chemistry Room temperature Spectrophotometry, Infrared Stability Water activity |
title | Stability limits of a red Carthamin-cellulose complex as a potential food colourant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20limits%20of%20a%20red%20Carthamin-cellulose%20complex%20as%20a%20potential%20food%20colourant&rft.jtitle=Food%20&%20function&rft.au=Baerle,%20Alexei&rft.date=2021-09-07&rft.volume=12&rft.issue=17&rft.spage=837&rft.epage=843&rft.pages=837-843&rft.issn=2042-6496&rft.eissn=2042-650X&rft_id=info:doi/10.1039/d1fo01376a&rft_dat=%3Cproquest_pubme%3E2566254950%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566254950&rft_id=info:pmid/34279018&rfr_iscdi=true |