Seaweed-Derived Alginate–Cellulose Nanofiber Aerogel for Insulation Applications
The next generation of green insulation materials is being developed to provide safer and more sustainable alternatives to conventional materials. Bio-based cellulose nanofiber (CNF) aerogels offer excellent thermal insulation properties; however, their high flammability restricts their application....
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-07, Vol.13 (29), p.34899-34909 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The next generation of green insulation materials is being developed to provide safer and more sustainable alternatives to conventional materials. Bio-based cellulose nanofiber (CNF) aerogels offer excellent thermal insulation properties; however, their high flammability restricts their application. In this study, the design concept for the development of a multifunctional and non-toxic insulation material is inspired by the natural composition of seaweed, comprising both alginate and cellulose. The approach includes three steps: first, CNFs were separated from alginate-rich seaweed to obtain a resource-efficient, fully bio-based, and inherently flame-retardant material; second, ice-templating, followed by freeze-drying, was employed to form an anisotropic aerogel for effective insulation; and finally, a simple crosslinking approach was applied to improve the flame-retardant behavior and stability. At a density of 0.015 g cm–3, the lightweight anisotropic aerogels displayed favorable mechanical properties, including a compressive modulus of 370 kPa, high thermal stability, low thermal conductivity (31.5 mW m–1 K–1), considerable flame retardancy (0.053 mm s–1), and self-extinguishing behavior, where the inherent characteristics were considerably improved by crosslinking. Different concentrations of the crosslinker altered the mechanical properties, while the anisotropic structure influenced the mechanical properties, combustion velocity, and to some extent thermal conductivity. Seaweed-derived aerogels possess intrinsic characteristics that could serve as a template for the future development of sustainable high-performance insulation materials. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.1c07954 |