Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications
In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by T...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2021-08, Vol.22 (8), p.3202-3215 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3215 |
---|---|
container_issue | 8 |
container_start_page | 3202 |
container_title | Biomacromolecules |
container_volume | 22 |
creator | Squinca, Paula Berglund, Linn Hanna, Kristina Rakar, Jonathan Junker, Johan Khalaf, Hazem Farinas, Cristiane S Oksman, Kristiina |
description | In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated. An outstanding absorption ability of 6200% combined with excellent mechanical properties, tensile strength of 2.1 ± 0.2 MPa, elastic modulus of 15.3 ± 0.3 MPa, and elongation at break of 25.1%, was achieved without alkali treatment. Furthermore, the absorption capacity was tunable by applying alkali treatment at different concentrations and by adjusting the hydrogel grammage. Cytocompatibility evaluation of the hydrogels showed no significant effect on human fibroblast proliferation in vitro. Ginger essential oil was used to functionalize the hydrogels by providing antimicrobial activity, furthering their potential as a multifunctional wound dressing. |
doi_str_mv | 10.1021/acs.biomac.1c00215 |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34254779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a708954989</sourcerecordid><originalsourceid>FETCH-LOGICAL-a553t-2bf5eab1533a857b7a61dd2e492d867df2bed95a21959a16d7977910e14643bd3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqXwB1gg72kGv5OwQIqm0CKVx2KApWXHzoyrTDyyk47Kr-emKSO6QbOwfGV_5_hxT5a9JnhBMCXvdJMWxoetbhakwbAinmSnRFCZc4np0_ta5EVRFSfZi5RuMMYV4-J5dsI4FRw2TrPfX8Zu8O3YN4MPve7Qpe_XLqKvug-tN1Bd3dkY1q5LaO-HDVqNvTadQ7VJIe4m0Xu02jj0PQyuHzw4tCGi2t7qvnEW_Qpjb9FFdCmBMap3u843epKll9mzVnfJvXqYz7Ifnz6ullf59bfLz8v6OtdCsCGnphVOGyIY06UoTKElsZY6XlFbysK21DhbCU1JJSpNpIX3FhXBjnDJmbHsLDuffdPe7UajdtFvdbxTQXt14X_WKsQ1jFFVTHB5HN4NoyqlKDng-RG4HxUpykJO9h9mHuCtsw18WtTdI9njnd5v1DrcqpKVlHIBBnQ2aGJIKbr2oCVYTblQkAs150I95AJEb_499SD5GwQAyhnYOxPa1HgH7TtgkBxZClwRBhVmSz_ct3AJzR1A-vZ4KdCLmZ5ueRPGCKFL_7v6H50060M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>American Chemical Society Journals</source><creator>Squinca, Paula ; Berglund, Linn ; Hanna, Kristina ; Rakar, Jonathan ; Junker, Johan ; Khalaf, Hazem ; Farinas, Cristiane S ; Oksman, Kristiina</creator><creatorcontrib>Squinca, Paula ; Berglund, Linn ; Hanna, Kristina ; Rakar, Jonathan ; Junker, Johan ; Khalaf, Hazem ; Farinas, Cristiane S ; Oksman, Kristiina</creatorcontrib><description>In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated. An outstanding absorption ability of 6200% combined with excellent mechanical properties, tensile strength of 2.1 ± 0.2 MPa, elastic modulus of 15.3 ± 0.3 MPa, and elongation at break of 25.1%, was achieved without alkali treatment. Furthermore, the absorption capacity was tunable by applying alkali treatment at different concentrations and by adjusting the hydrogel grammage. Cytocompatibility evaluation of the hydrogels showed no significant effect on human fibroblast proliferation in vitro. Ginger essential oil was used to functionalize the hydrogels by providing antimicrobial activity, furthering their potential as a multifunctional wound dressing.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.1c00215</identifier><identifier>PMID: 34254779</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Anti-Bacterial Agents - pharmacology ; Bandages ; Biochemistry & Molecular Biology ; Chemistry ; Chemistry, Organic ; Humans ; Hydrogels ; Life Sciences & Biomedicine ; Nanofibers ; Physical Sciences ; Polymer Science ; Science & Technology ; Trä och bionanokompositer ; Wood and Bionanocomposites ; Zingiber officinale</subject><ispartof>Biomacromolecules, 2021-08, Vol.22 (8), p.3202-3215</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000685091300003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a553t-2bf5eab1533a857b7a61dd2e492d867df2bed95a21959a16d7977910e14643bd3</citedby><cites>FETCH-LOGICAL-a553t-2bf5eab1533a857b7a61dd2e492d867df2bed95a21959a16d7977910e14643bd3</cites><orcidid>0000-0002-9985-190X ; 0000-0002-6247-5963 ; 0000-0003-4762-2854 ; 0000-0003-0992-2549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.1c00215$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.1c00215$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,553,781,785,886,2766,27081,27929,27930,39263,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34254779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178766$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86584$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-93546$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Squinca, Paula</creatorcontrib><creatorcontrib>Berglund, Linn</creatorcontrib><creatorcontrib>Hanna, Kristina</creatorcontrib><creatorcontrib>Rakar, Jonathan</creatorcontrib><creatorcontrib>Junker, Johan</creatorcontrib><creatorcontrib>Khalaf, Hazem</creatorcontrib><creatorcontrib>Farinas, Cristiane S</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><title>Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications</title><title>Biomacromolecules</title><addtitle>BIOMACROMOLECULES</addtitle><addtitle>Biomacromolecules</addtitle><description>In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated. An outstanding absorption ability of 6200% combined with excellent mechanical properties, tensile strength of 2.1 ± 0.2 MPa, elastic modulus of 15.3 ± 0.3 MPa, and elongation at break of 25.1%, was achieved without alkali treatment. Furthermore, the absorption capacity was tunable by applying alkali treatment at different concentrations and by adjusting the hydrogel grammage. Cytocompatibility evaluation of the hydrogels showed no significant effect on human fibroblast proliferation in vitro. Ginger essential oil was used to functionalize the hydrogels by providing antimicrobial activity, furthering their potential as a multifunctional wound dressing.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bandages</subject><subject>Biochemistry & Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Organic</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Life Sciences & Biomedicine</subject><subject>Nanofibers</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Science & Technology</subject><subject>Trä och bionanokompositer</subject><subject>Wood and Bionanocomposites</subject><subject>Zingiber officinale</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqNkktv1DAUhSMEoqXwB1gg72kGv5OwQIqm0CKVx2KApWXHzoyrTDyyk47Kr-emKSO6QbOwfGV_5_hxT5a9JnhBMCXvdJMWxoetbhakwbAinmSnRFCZc4np0_ta5EVRFSfZi5RuMMYV4-J5dsI4FRw2TrPfX8Zu8O3YN4MPve7Qpe_XLqKvug-tN1Bd3dkY1q5LaO-HDVqNvTadQ7VJIe4m0Xu02jj0PQyuHzw4tCGi2t7qvnEW_Qpjb9FFdCmBMap3u843epKll9mzVnfJvXqYz7Ifnz6ullf59bfLz8v6OtdCsCGnphVOGyIY06UoTKElsZY6XlFbysK21DhbCU1JJSpNpIX3FhXBjnDJmbHsLDuffdPe7UajdtFvdbxTQXt14X_WKsQ1jFFVTHB5HN4NoyqlKDng-RG4HxUpykJO9h9mHuCtsw18WtTdI9njnd5v1DrcqpKVlHIBBnQ2aGJIKbr2oCVYTblQkAs150I95AJEb_499SD5GwQAyhnYOxPa1HgH7TtgkBxZClwRBhVmSz_ct3AJzR1A-vZ4KdCLmZ5ueRPGCKFL_7v6H50060M</recordid><startdate>20210809</startdate><enddate>20210809</enddate><creator>Squinca, Paula</creator><creator>Berglund, Linn</creator><creator>Hanna, Kristina</creator><creator>Rakar, Jonathan</creator><creator>Junker, Johan</creator><creator>Khalaf, Hazem</creator><creator>Farinas, Cristiane S</creator><creator>Oksman, Kristiina</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><scope>AABEP</scope><scope>D91</scope><orcidid>https://orcid.org/0000-0002-9985-190X</orcidid><orcidid>https://orcid.org/0000-0002-6247-5963</orcidid><orcidid>https://orcid.org/0000-0003-4762-2854</orcidid><orcidid>https://orcid.org/0000-0003-0992-2549</orcidid></search><sort><creationdate>20210809</creationdate><title>Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications</title><author>Squinca, Paula ; Berglund, Linn ; Hanna, Kristina ; Rakar, Jonathan ; Junker, Johan ; Khalaf, Hazem ; Farinas, Cristiane S ; Oksman, Kristiina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a553t-2bf5eab1533a857b7a61dd2e492d867df2bed95a21959a16d7977910e14643bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bandages</topic><topic>Biochemistry & Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Organic</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Life Sciences & Biomedicine</topic><topic>Nanofibers</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Science & Technology</topic><topic>Trä och bionanokompositer</topic><topic>Wood and Bionanocomposites</topic><topic>Zingiber officinale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Squinca, Paula</creatorcontrib><creatorcontrib>Berglund, Linn</creatorcontrib><creatorcontrib>Hanna, Kristina</creatorcontrib><creatorcontrib>Rakar, Jonathan</creatorcontrib><creatorcontrib>Junker, Johan</creatorcontrib><creatorcontrib>Khalaf, Hazem</creatorcontrib><creatorcontrib>Farinas, Cristiane S</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Örebro universitet full text</collection><collection>SWEPUB Örebro universitet</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Squinca, Paula</au><au>Berglund, Linn</au><au>Hanna, Kristina</au><au>Rakar, Jonathan</au><au>Junker, Johan</au><au>Khalaf, Hazem</au><au>Farinas, Cristiane S</au><au>Oksman, Kristiina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications</atitle><jtitle>Biomacromolecules</jtitle><stitle>BIOMACROMOLECULES</stitle><addtitle>Biomacromolecules</addtitle><date>2021-08-09</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>3202</spage><epage>3215</epage><pages>3202-3215</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated. An outstanding absorption ability of 6200% combined with excellent mechanical properties, tensile strength of 2.1 ± 0.2 MPa, elastic modulus of 15.3 ± 0.3 MPa, and elongation at break of 25.1%, was achieved without alkali treatment. Furthermore, the absorption capacity was tunable by applying alkali treatment at different concentrations and by adjusting the hydrogel grammage. Cytocompatibility evaluation of the hydrogels showed no significant effect on human fibroblast proliferation in vitro. Ginger essential oil was used to functionalize the hydrogels by providing antimicrobial activity, furthering their potential as a multifunctional wound dressing.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>34254779</pmid><doi>10.1021/acs.biomac.1c00215</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9985-190X</orcidid><orcidid>https://orcid.org/0000-0002-6247-5963</orcidid><orcidid>https://orcid.org/0000-0003-4762-2854</orcidid><orcidid>https://orcid.org/0000-0003-0992-2549</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2021-08, Vol.22 (8), p.3202-3215 |
issn | 1525-7797 1526-4602 1526-4602 |
language | eng |
recordid | cdi_pubmed_primary_34254779 |
source | MEDLINE; SWEPUB Freely available online; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals |
subjects | Anti-Bacterial Agents - pharmacology Bandages Biochemistry & Molecular Biology Chemistry Chemistry, Organic Humans Hydrogels Life Sciences & Biomedicine Nanofibers Physical Sciences Polymer Science Science & Technology Trä och bionanokompositer Wood and Bionanocomposites Zingiber officinale |
title | Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Ginger%20Nanofiber%20Hydrogels%20with%20Tunable%20Absorption:%20The%20Potential%20for%20Advanced%20Wound%20Dressing%20Applications&rft.jtitle=Biomacromolecules&rft.au=Squinca,%20Paula&rft.date=2021-08-09&rft.volume=22&rft.issue=8&rft.spage=3202&rft.epage=3215&rft.pages=3202-3215&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.1c00215&rft_dat=%3Cacs_pubme%3Ea708954989%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34254779&rfr_iscdi=true |