Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response

In this paper, with eclipse stage in consideration, we propose an HIV-1 infection model with a general incidence rate and CTL immune response. We first study the existence and local stability of equilibria, which is characterized by the basic infection reproduction number and the basic immunity repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological dynamics 2021-01, Vol.15 (1), p.367-394
Hauptverfasser: Ma, Xinsheng, Zhang, Yuhuai, Chen, Yuming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 1
container_start_page 367
container_title Journal of biological dynamics
container_volume 15
creator Ma, Xinsheng
Zhang, Yuhuai
Chen, Yuming
description In this paper, with eclipse stage in consideration, we propose an HIV-1 infection model with a general incidence rate and CTL immune response. We first study the existence and local stability of equilibria, which is characterized by the basic infection reproduction number and the basic immunity reproduction number . The local stability analysis indicates the occurrence of transcritical bifurcations of equilibria. We confirm the bifurcations at the disease-free equilibrium and the infected immune-free equilibrium with transmission rate and the decay rate of CTLs as bifurcation parameters, respectively. Then we apply the approach of Lyapunov functions to establish the global stability of the equilibria, which is determined by the two basic reproduction numbers. These theoretical results are supported with numerical simulations. Moreover, we also identify the high sensitivity parameters by carrying out the sensitivity analysis of the two basic reproduction numbers to the model parameters.
doi_str_mv 10.1080/17513758.2021.1950224
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34251981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ec1738d88f6745268e15b349e2f24847</doaj_id><sourcerecordid>2551209684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-cba9ebc254a8e7ffadebd3c21b19df5fbc493d4e631802820524c52d845545ee3</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhiMEYj_gJ4ByREIp_kycGygCtlIlDixcLcceL145cbETVf33OE23xxW-eDzzvjPyPEXxDqMNRgJ9wg3HtOFiQxDBG9xyRAh7UVwv-Yo2df3yEnNxVdyk9IgQ56SpXxdXlBGOW4Gvi_BzUr3zbjqWajRl7-wctZpcGPNb-WNyqQw2x-Xd9neFSzda0KfyEAz48uCmP6UqH2CEqHwua2dg1HDq1t3vSjcM8whlhLQPY4I3xSurfIK35_u2-PXt6313V-1-fN92X3aVZk07VbpXLfSacKYENNYqA72hmuAet8Zy22vWUsOgplggIgjihGlOjGCcMw5Ab4vt2tcE9Sj30Q0qHmVQTp4SIT5IFSenPUjQuKHCCGHrhnFSC8C8p6wFYgkTrMm9Pqy99jH8nSFNcnBJg_dqhDAnSTjHBLW1YFnKV6mOIaUI9jIaI7lwk0_c5MJNnrll3_vziLkfwFxcT6CyQKyCA_TBJu2WJV9kCKG6oXkJaDm4c9MJYRfmccrWj_9vzerPqzqTDnFQhxC9kZM6-hBtVJlvkvT5z_wDvifHIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551209684</pqid></control><display><type>article</type><title>Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Taylor &amp; Francis (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ma, Xinsheng ; Zhang, Yuhuai ; Chen, Yuming</creator><creatorcontrib>Ma, Xinsheng ; Zhang, Yuhuai ; Chen, Yuming</creatorcontrib><description>In this paper, with eclipse stage in consideration, we propose an HIV-1 infection model with a general incidence rate and CTL immune response. We first study the existence and local stability of equilibria, which is characterized by the basic infection reproduction number and the basic immunity reproduction number . The local stability analysis indicates the occurrence of transcritical bifurcations of equilibria. We confirm the bifurcations at the disease-free equilibrium and the infected immune-free equilibrium with transmission rate and the decay rate of CTLs as bifurcation parameters, respectively. Then we apply the approach of Lyapunov functions to establish the global stability of the equilibria, which is determined by the two basic reproduction numbers. These theoretical results are supported with numerical simulations. Moreover, we also identify the high sensitivity parameters by carrying out the sensitivity analysis of the two basic reproduction numbers to the model parameters.</description><identifier>ISSN: 1751-3758</identifier><identifier>EISSN: 1751-3766</identifier><identifier>DOI: 10.1080/17513758.2021.1950224</identifier><identifier>PMID: 34251981</identifier><language>eng</language><publisher>ABINGDON: Taylor &amp; Francis</publisher><subject>Basic Reproduction Number ; bifurcation ; Computer Simulation ; Ecology ; Environmental Sciences &amp; Ecology ; global stability ; HIV infection ; HIV-1 ; Immunity ; Incidence ; Life Sciences &amp; Biomedicine ; Lyapunov function ; Mathematical &amp; Computational Biology ; Models, Biological ; Science &amp; Technology</subject><ispartof>Journal of biological dynamics, 2021-01, Vol.15 (1), p.367-394</ispartof><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000673052000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c479t-cba9ebc254a8e7ffadebd3c21b19df5fbc493d4e631802820524c52d845545ee3</citedby><cites>FETCH-LOGICAL-c479t-cba9ebc254a8e7ffadebd3c21b19df5fbc493d4e631802820524c52d845545ee3</cites><orcidid>0000-0002-2896-5627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17513758.2021.1950224$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17513758.2021.1950224$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,27506,27928,27929,59147,59148</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34251981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Xinsheng</creatorcontrib><creatorcontrib>Zhang, Yuhuai</creatorcontrib><creatorcontrib>Chen, Yuming</creatorcontrib><title>Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response</title><title>Journal of biological dynamics</title><addtitle>J BIOL DYNAM</addtitle><addtitle>J Biol Dyn</addtitle><description>In this paper, with eclipse stage in consideration, we propose an HIV-1 infection model with a general incidence rate and CTL immune response. We first study the existence and local stability of equilibria, which is characterized by the basic infection reproduction number and the basic immunity reproduction number . The local stability analysis indicates the occurrence of transcritical bifurcations of equilibria. We confirm the bifurcations at the disease-free equilibrium and the infected immune-free equilibrium with transmission rate and the decay rate of CTLs as bifurcation parameters, respectively. Then we apply the approach of Lyapunov functions to establish the global stability of the equilibria, which is determined by the two basic reproduction numbers. These theoretical results are supported with numerical simulations. Moreover, we also identify the high sensitivity parameters by carrying out the sensitivity analysis of the two basic reproduction numbers to the model parameters.</description><subject>Basic Reproduction Number</subject><subject>bifurcation</subject><subject>Computer Simulation</subject><subject>Ecology</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>global stability</subject><subject>HIV infection</subject><subject>HIV-1</subject><subject>Immunity</subject><subject>Incidence</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lyapunov function</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Models, Biological</subject><subject>Science &amp; Technology</subject><issn>1751-3758</issn><issn>1751-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU2P0zAQhiMEYj_gJ4ByREIp_kycGygCtlIlDixcLcceL145cbETVf33OE23xxW-eDzzvjPyPEXxDqMNRgJ9wg3HtOFiQxDBG9xyRAh7UVwv-Yo2df3yEnNxVdyk9IgQ56SpXxdXlBGOW4Gvi_BzUr3zbjqWajRl7-wctZpcGPNb-WNyqQw2x-Xd9neFSzda0KfyEAz48uCmP6UqH2CEqHwua2dg1HDq1t3vSjcM8whlhLQPY4I3xSurfIK35_u2-PXt6313V-1-fN92X3aVZk07VbpXLfSacKYENNYqA72hmuAet8Zy22vWUsOgplggIgjihGlOjGCcMw5Ab4vt2tcE9Sj30Q0qHmVQTp4SIT5IFSenPUjQuKHCCGHrhnFSC8C8p6wFYgkTrMm9Pqy99jH8nSFNcnBJg_dqhDAnSTjHBLW1YFnKV6mOIaUI9jIaI7lwk0_c5MJNnrll3_vziLkfwFxcT6CyQKyCA_TBJu2WJV9kCKG6oXkJaDm4c9MJYRfmccrWj_9vzerPqzqTDnFQhxC9kZM6-hBtVJlvkvT5z_wDvifHIQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ma, Xinsheng</creator><creator>Zhang, Yuhuai</creator><creator>Chen, Yuming</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2896-5627</orcidid></search><sort><creationdate>20210101</creationdate><title>Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response</title><author>Ma, Xinsheng ; Zhang, Yuhuai ; Chen, Yuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-cba9ebc254a8e7ffadebd3c21b19df5fbc493d4e631802820524c52d845545ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basic Reproduction Number</topic><topic>bifurcation</topic><topic>Computer Simulation</topic><topic>Ecology</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>global stability</topic><topic>HIV infection</topic><topic>HIV-1</topic><topic>Immunity</topic><topic>Incidence</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lyapunov function</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Models, Biological</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xinsheng</creatorcontrib><creatorcontrib>Zhang, Yuhuai</creatorcontrib><creatorcontrib>Chen, Yuming</creatorcontrib><collection>Access via Taylor &amp; Francis (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of biological dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xinsheng</au><au>Zhang, Yuhuai</au><au>Chen, Yuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response</atitle><jtitle>Journal of biological dynamics</jtitle><stitle>J BIOL DYNAM</stitle><addtitle>J Biol Dyn</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>367</spage><epage>394</epage><pages>367-394</pages><issn>1751-3758</issn><eissn>1751-3766</eissn><abstract>In this paper, with eclipse stage in consideration, we propose an HIV-1 infection model with a general incidence rate and CTL immune response. We first study the existence and local stability of equilibria, which is characterized by the basic infection reproduction number and the basic immunity reproduction number . The local stability analysis indicates the occurrence of transcritical bifurcations of equilibria. We confirm the bifurcations at the disease-free equilibrium and the infected immune-free equilibrium with transmission rate and the decay rate of CTLs as bifurcation parameters, respectively. Then we apply the approach of Lyapunov functions to establish the global stability of the equilibria, which is determined by the two basic reproduction numbers. These theoretical results are supported with numerical simulations. Moreover, we also identify the high sensitivity parameters by carrying out the sensitivity analysis of the two basic reproduction numbers to the model parameters.</abstract><cop>ABINGDON</cop><pub>Taylor &amp; Francis</pub><pmid>34251981</pmid><doi>10.1080/17513758.2021.1950224</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-2896-5627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-3758
ispartof Journal of biological dynamics, 2021-01, Vol.15 (1), p.367-394
issn 1751-3758
1751-3766
language eng
recordid cdi_pubmed_primary_34251981
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Taylor & Francis (Open Access Collection); EZB-FREE-00999 freely available EZB journals
subjects Basic Reproduction Number
bifurcation
Computer Simulation
Ecology
Environmental Sciences & Ecology
global stability
HIV infection
HIV-1
Immunity
Incidence
Life Sciences & Biomedicine
Lyapunov function
Mathematical & Computational Biology
Models, Biological
Science & Technology
title Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20bifurcation%20analysis%20of%20an%20HIV-1%20infection%20model%20with%20a%20general%20incidence%20and%20CTL%20immune%20response&rft.jtitle=Journal%20of%20biological%20dynamics&rft.au=Ma,%20Xinsheng&rft.date=2021-01-01&rft.volume=15&rft.issue=1&rft.spage=367&rft.epage=394&rft.pages=367-394&rft.issn=1751-3758&rft.eissn=1751-3766&rft_id=info:doi/10.1080/17513758.2021.1950224&rft_dat=%3Cproquest_pubme%3E2551209684%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551209684&rft_id=info:pmid/34251981&rft_doaj_id=oai_doaj_org_article_ec1738d88f6745268e15b349e2f24847&rfr_iscdi=true