Perspective on integrating machine learning into computational chemistry and materials science
Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-06, Vol.154 (23), p.230903-230903 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230903 |
---|---|
container_issue | 23 |
container_start_page | 230903 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Westermayr, Julia Gastegger, Michael Schütt, Kristof T. Maurer, Reinhard J. |
description | Machine learning (ML) methods are being used in almost every conceivable area of
electronic structure theory and molecular simulation. In particular, ML has become firmly
established in the construction of high-dimensional interatomic potentials. Not a day goes
by without another proof of principle being published on how ML methods can represent and
predict quantum mechanical properties—be they observable, such as molecular
polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in
electronic structure theory and molecular simulation, we provide an overview of how
atomistic computational modeling is being transformed by the incorporation of ML
approaches. From the perspective of the practitioner in the field, we assess how common
workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we
discuss how a tighter and lasting integration of ML methods with computational chemistry
and materials science can be achieved and what it will mean for research practice,
software development, and postgraduate training. |
doi_str_mv | 10.1063/5.0047760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34241249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550264762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-355928e43be7dbdf511d759ab3c46382826b471ec52cfbeadaaa2658ff816c293</originalsourceid><addsrcrecordid>eNp90E1PwyAcBnBiNG5OD34B06OadAIF2h7N4luyRA96lVD674ZpaYV2yb69LJ16MPFEgB8P8CB0TvCcYJHc8DnGLE0FPkBTgrM8TkWOD9EUY0riXGAxQSfef2CMSUrZMZokjDJCWT5F7y_gfAe6NxuIWhsZ28PKqd7YVdQovTYWohqUs7uFsNlGum26oQ-itaqO9Boa43u3jZQtw4kenFG1j7w2YDWcoqMqTOFsP87Q2_3d6-IxXj4_PC1ul7FOctzHCec5zYAlBaRlUVackDLluSoSzUSS0YyKgqUENKe6KkCVSikqeFZVGRGa5skMXY65nWs_B_C9DK_SUNfKQjt4STnHVLBU0ECvRqpd672DSnbONMptJcFyV6fkcl9nsBf72KFooPyR3_0FcD2C8N-xkx-zad1vkuzK6j_89-ovXdGNLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550264762</pqid></control><display><type>article</type><title>Perspective on integrating machine learning into computational chemistry and materials science</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Westermayr, Julia ; Gastegger, Michael ; Schütt, Kristof T. ; Maurer, Reinhard J.</creator><creatorcontrib>Westermayr, Julia ; Gastegger, Michael ; Schütt, Kristof T. ; Maurer, Reinhard J.</creatorcontrib><description>Machine learning (ML) methods are being used in almost every conceivable area of
electronic structure theory and molecular simulation. In particular, ML has become firmly
established in the construction of high-dimensional interatomic potentials. Not a day goes
by without another proof of principle being published on how ML methods can represent and
predict quantum mechanical properties—be they observable, such as molecular
polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in
electronic structure theory and molecular simulation, we provide an overview of how
atomistic computational modeling is being transformed by the incorporation of ML
approaches. From the perspective of the practitioner in the field, we assess how common
workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we
discuss how a tighter and lasting integration of ML methods with computational chemistry
and materials science can be achieved and what it will mean for research practice,
software development, and postgraduate training.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0047760</identifier><identifier>PMID: 34241249</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2021-06, Vol.154 (23), p.230903-230903</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-355928e43be7dbdf511d759ab3c46382826b471ec52cfbeadaaa2658ff816c293</citedby><cites>FETCH-LOGICAL-c390t-355928e43be7dbdf511d759ab3c46382826b471ec52cfbeadaaa2658ff816c293</cites><orcidid>0000-0002-6531-0742 ; 0000-0002-3004-785X ; 0000-0001-8342-0964 ; 0000-0001-7954-3275 ; 0000000179543275 ; 0000000183420964 ; 0000000265310742 ; 000000023004785X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0047760$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34241249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westermayr, Julia</creatorcontrib><creatorcontrib>Gastegger, Michael</creatorcontrib><creatorcontrib>Schütt, Kristof T.</creatorcontrib><creatorcontrib>Maurer, Reinhard J.</creatorcontrib><title>Perspective on integrating machine learning into computational chemistry and materials science</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Machine learning (ML) methods are being used in almost every conceivable area of
electronic structure theory and molecular simulation. In particular, ML has become firmly
established in the construction of high-dimensional interatomic potentials. Not a day goes
by without another proof of principle being published on how ML methods can represent and
predict quantum mechanical properties—be they observable, such as molecular
polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in
electronic structure theory and molecular simulation, we provide an overview of how
atomistic computational modeling is being transformed by the incorporation of ML
approaches. From the perspective of the practitioner in the field, we assess how common
workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we
discuss how a tighter and lasting integration of ML methods with computational chemistry
and materials science can be achieved and what it will mean for research practice,
software development, and postgraduate training.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E1PwyAcBnBiNG5OD34B06OadAIF2h7N4luyRA96lVD674ZpaYV2yb69LJ16MPFEgB8P8CB0TvCcYJHc8DnGLE0FPkBTgrM8TkWOD9EUY0riXGAxQSfef2CMSUrZMZokjDJCWT5F7y_gfAe6NxuIWhsZ28PKqd7YVdQovTYWohqUs7uFsNlGum26oQ-itaqO9Boa43u3jZQtw4kenFG1j7w2YDWcoqMqTOFsP87Q2_3d6-IxXj4_PC1ul7FOctzHCec5zYAlBaRlUVackDLluSoSzUSS0YyKgqUENKe6KkCVSikqeFZVGRGa5skMXY65nWs_B_C9DK_SUNfKQjt4STnHVLBU0ECvRqpd672DSnbONMptJcFyV6fkcl9nsBf72KFooPyR3_0FcD2C8N-xkx-zad1vkuzK6j_89-ovXdGNLQ</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Westermayr, Julia</creator><creator>Gastegger, Michael</creator><creator>Schütt, Kristof T.</creator><creator>Maurer, Reinhard J.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6531-0742</orcidid><orcidid>https://orcid.org/0000-0002-3004-785X</orcidid><orcidid>https://orcid.org/0000-0001-8342-0964</orcidid><orcidid>https://orcid.org/0000-0001-7954-3275</orcidid><orcidid>https://orcid.org/0000000179543275</orcidid><orcidid>https://orcid.org/0000000183420964</orcidid><orcidid>https://orcid.org/0000000265310742</orcidid><orcidid>https://orcid.org/000000023004785X</orcidid></search><sort><creationdate>20210621</creationdate><title>Perspective on integrating machine learning into computational chemistry and materials science</title><author>Westermayr, Julia ; Gastegger, Michael ; Schütt, Kristof T. ; Maurer, Reinhard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-355928e43be7dbdf511d759ab3c46382826b471ec52cfbeadaaa2658ff816c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westermayr, Julia</creatorcontrib><creatorcontrib>Gastegger, Michael</creatorcontrib><creatorcontrib>Schütt, Kristof T.</creatorcontrib><creatorcontrib>Maurer, Reinhard J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westermayr, Julia</au><au>Gastegger, Michael</au><au>Schütt, Kristof T.</au><au>Maurer, Reinhard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspective on integrating machine learning into computational chemistry and materials science</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-06-21</date><risdate>2021</risdate><volume>154</volume><issue>23</issue><spage>230903</spage><epage>230903</epage><pages>230903-230903</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Machine learning (ML) methods are being used in almost every conceivable area of
electronic structure theory and molecular simulation. In particular, ML has become firmly
established in the construction of high-dimensional interatomic potentials. Not a day goes
by without another proof of principle being published on how ML methods can represent and
predict quantum mechanical properties—be they observable, such as molecular
polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in
electronic structure theory and molecular simulation, we provide an overview of how
atomistic computational modeling is being transformed by the incorporation of ML
approaches. From the perspective of the practitioner in the field, we assess how common
workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we
discuss how a tighter and lasting integration of ML methods with computational chemistry
and materials science can be achieved and what it will mean for research practice,
software development, and postgraduate training.</abstract><cop>United States</cop><pmid>34241249</pmid><doi>10.1063/5.0047760</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6531-0742</orcidid><orcidid>https://orcid.org/0000-0002-3004-785X</orcidid><orcidid>https://orcid.org/0000-0001-8342-0964</orcidid><orcidid>https://orcid.org/0000-0001-7954-3275</orcidid><orcidid>https://orcid.org/0000000179543275</orcidid><orcidid>https://orcid.org/0000000183420964</orcidid><orcidid>https://orcid.org/0000000265310742</orcidid><orcidid>https://orcid.org/000000023004785X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-06, Vol.154 (23), p.230903-230903 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_34241249 |
source | AIP Journals Complete; Alma/SFX Local Collection |
title | Perspective on integrating machine learning into computational chemistry and materials science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspective%20on%20integrating%20machine%20learning%20into%20computational%20chemistry%20and%20materials%20science&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Westermayr,%20Julia&rft.date=2021-06-21&rft.volume=154&rft.issue=23&rft.spage=230903&rft.epage=230903&rft.pages=230903-230903&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0047760&rft_dat=%3Cproquest_pubme%3E2550264762%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550264762&rft_id=info:pmid/34241249&rfr_iscdi=true |