Perspective on integrating machine learning into computational chemistry and materials science

Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-06, Vol.154 (23), p.230903-230903
Hauptverfasser: Westermayr, Julia, Gastegger, Michael, Schütt, Kristof T., Maurer, Reinhard J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230903
container_issue 23
container_start_page 230903
container_title The Journal of chemical physics
container_volume 154
creator Westermayr, Julia
Gastegger, Michael
Schütt, Kristof T.
Maurer, Reinhard J.
description Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties—be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.
doi_str_mv 10.1063/5.0047760
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34241249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550264762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-355928e43be7dbdf511d759ab3c46382826b471ec52cfbeadaaa2658ff816c293</originalsourceid><addsrcrecordid>eNp90E1PwyAcBnBiNG5OD34B06OadAIF2h7N4luyRA96lVD674ZpaYV2yb69LJ16MPFEgB8P8CB0TvCcYJHc8DnGLE0FPkBTgrM8TkWOD9EUY0riXGAxQSfef2CMSUrZMZokjDJCWT5F7y_gfAe6NxuIWhsZ28PKqd7YVdQovTYWohqUs7uFsNlGum26oQ-itaqO9Boa43u3jZQtw4kenFG1j7w2YDWcoqMqTOFsP87Q2_3d6-IxXj4_PC1ul7FOctzHCec5zYAlBaRlUVackDLluSoSzUSS0YyKgqUENKe6KkCVSikqeFZVGRGa5skMXY65nWs_B_C9DK_SUNfKQjt4STnHVLBU0ECvRqpd672DSnbONMptJcFyV6fkcl9nsBf72KFooPyR3_0FcD2C8N-xkx-zad1vkuzK6j_89-ovXdGNLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550264762</pqid></control><display><type>article</type><title>Perspective on integrating machine learning into computational chemistry and materials science</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Westermayr, Julia ; Gastegger, Michael ; Schütt, Kristof T. ; Maurer, Reinhard J.</creator><creatorcontrib>Westermayr, Julia ; Gastegger, Michael ; Schütt, Kristof T. ; Maurer, Reinhard J.</creatorcontrib><description>Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties—be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0047760</identifier><identifier>PMID: 34241249</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2021-06, Vol.154 (23), p.230903-230903</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-355928e43be7dbdf511d759ab3c46382826b471ec52cfbeadaaa2658ff816c293</citedby><cites>FETCH-LOGICAL-c390t-355928e43be7dbdf511d759ab3c46382826b471ec52cfbeadaaa2658ff816c293</cites><orcidid>0000-0002-6531-0742 ; 0000-0002-3004-785X ; 0000-0001-8342-0964 ; 0000-0001-7954-3275 ; 0000000179543275 ; 0000000183420964 ; 0000000265310742 ; 000000023004785X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0047760$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34241249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westermayr, Julia</creatorcontrib><creatorcontrib>Gastegger, Michael</creatorcontrib><creatorcontrib>Schütt, Kristof T.</creatorcontrib><creatorcontrib>Maurer, Reinhard J.</creatorcontrib><title>Perspective on integrating machine learning into computational chemistry and materials science</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties—be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E1PwyAcBnBiNG5OD34B06OadAIF2h7N4luyRA96lVD674ZpaYV2yb69LJ16MPFEgB8P8CB0TvCcYJHc8DnGLE0FPkBTgrM8TkWOD9EUY0riXGAxQSfef2CMSUrZMZokjDJCWT5F7y_gfAe6NxuIWhsZ28PKqd7YVdQovTYWohqUs7uFsNlGum26oQ-itaqO9Boa43u3jZQtw4kenFG1j7w2YDWcoqMqTOFsP87Q2_3d6-IxXj4_PC1ul7FOctzHCec5zYAlBaRlUVackDLluSoSzUSS0YyKgqUENKe6KkCVSikqeFZVGRGa5skMXY65nWs_B_C9DK_SUNfKQjt4STnHVLBU0ECvRqpd672DSnbONMptJcFyV6fkcl9nsBf72KFooPyR3_0FcD2C8N-xkx-zad1vkuzK6j_89-ovXdGNLQ</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Westermayr, Julia</creator><creator>Gastegger, Michael</creator><creator>Schütt, Kristof T.</creator><creator>Maurer, Reinhard J.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6531-0742</orcidid><orcidid>https://orcid.org/0000-0002-3004-785X</orcidid><orcidid>https://orcid.org/0000-0001-8342-0964</orcidid><orcidid>https://orcid.org/0000-0001-7954-3275</orcidid><orcidid>https://orcid.org/0000000179543275</orcidid><orcidid>https://orcid.org/0000000183420964</orcidid><orcidid>https://orcid.org/0000000265310742</orcidid><orcidid>https://orcid.org/000000023004785X</orcidid></search><sort><creationdate>20210621</creationdate><title>Perspective on integrating machine learning into computational chemistry and materials science</title><author>Westermayr, Julia ; Gastegger, Michael ; Schütt, Kristof T. ; Maurer, Reinhard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-355928e43be7dbdf511d759ab3c46382826b471ec52cfbeadaaa2658ff816c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westermayr, Julia</creatorcontrib><creatorcontrib>Gastegger, Michael</creatorcontrib><creatorcontrib>Schütt, Kristof T.</creatorcontrib><creatorcontrib>Maurer, Reinhard J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westermayr, Julia</au><au>Gastegger, Michael</au><au>Schütt, Kristof T.</au><au>Maurer, Reinhard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspective on integrating machine learning into computational chemistry and materials science</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-06-21</date><risdate>2021</risdate><volume>154</volume><issue>23</issue><spage>230903</spage><epage>230903</epage><pages>230903-230903</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties—be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.</abstract><cop>United States</cop><pmid>34241249</pmid><doi>10.1063/5.0047760</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6531-0742</orcidid><orcidid>https://orcid.org/0000-0002-3004-785X</orcidid><orcidid>https://orcid.org/0000-0001-8342-0964</orcidid><orcidid>https://orcid.org/0000-0001-7954-3275</orcidid><orcidid>https://orcid.org/0000000179543275</orcidid><orcidid>https://orcid.org/0000000183420964</orcidid><orcidid>https://orcid.org/0000000265310742</orcidid><orcidid>https://orcid.org/000000023004785X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-06, Vol.154 (23), p.230903-230903
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_34241249
source AIP Journals Complete; Alma/SFX Local Collection
title Perspective on integrating machine learning into computational chemistry and materials science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspective%20on%20integrating%20machine%20learning%20into%20computational%20chemistry%20and%20materials%20science&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Westermayr,%20Julia&rft.date=2021-06-21&rft.volume=154&rft.issue=23&rft.spage=230903&rft.epage=230903&rft.pages=230903-230903&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0047760&rft_dat=%3Cproquest_pubme%3E2550264762%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550264762&rft_id=info:pmid/34241249&rfr_iscdi=true