Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data
Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing...
Gespeichert in:
Veröffentlicht in: | eLife 2021-06, Vol.10, Article 65828 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 10 |
creator | Stirrup, Oliver Hughes, Joseph Parker, Matthew Partridge, David G. Shepherd, James G. Blackstone, James Coll, Francesc Keeley, Alexander Lindsey, Benjamin B. Marek, Aleksandra Peters, Christine Singer, Joshua B. Tamuri, Asif de Silva, Thushan Thomson, Emma C. Breuer, Judith |
description | Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult.
Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020.
Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission >= 8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%).
Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period. |
doi_str_mv | 10.7554/eLife.65828 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34184637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_801b332d0e0e4b6db87e76193fae7cc9</doaj_id><sourcerecordid>2598433115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-fe30b074d5a2eb404cb1bd82ec768a7eccd7e2ed94cafac1f9059cca382baffb3</originalsourceid><addsrcrecordid>eNqNktFrFDEQxhdRbKl98l0WfBFka7LJbrIvQlmqFg6EVsW3kEwm15x7ybnZVfrfN3dXz9Yn85Jh5jcfw8xXFC8pORNNw9_hwjs8axtZyyfFcU0aUhHJvz99EB8VpymtSH6CS0m758UR41Tylonjwl7pjbelQ7RGw48yhvImpo2f9JDjhFN5fX51XfXxW1WXPjiEyed8CXFtfPBhWWLux7WPQ1x6yF062DLhzxkDbMtWT_pF8czpIeHp_X9SfP1w8aX_VC0-f7zszxcVNFRMlUNGTB7SNrpGwwkHQ42VNYJopRYIYAXWaDsO2mmgriNNB6CZrI12zrCT4nKva6Neqc3o13q8VVF7tUvEcan0OHkYUElCDWO1JUiQm9YaKVC0tGNOowDostb7vdZmNmu0gGEa9fBI9HEl-Bu1jL9UvkRDCcsCb-4Fxpi3kSa19glwGHTAOCdVN7xt801akdHX_6CrOI8hrypTneSMUdpk6u2egjGmNKI7DEOJ2ppB7cygdmbI9KuH8x_YP6f_K_cbTXQJfD4YHrDsllZwIUi9NQ7NtPx_us_22dqkj3OY2B0yodMk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598433115</pqid></control><display><type>article</type><title>Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Stirrup, Oliver ; Hughes, Joseph ; Parker, Matthew ; Partridge, David G. ; Shepherd, James G. ; Blackstone, James ; Coll, Francesc ; Keeley, Alexander ; Lindsey, Benjamin B. ; Marek, Aleksandra ; Peters, Christine ; Singer, Joshua B. ; Tamuri, Asif ; de Silva, Thushan ; Thomson, Emma C. ; Breuer, Judith</creator><creatorcontrib>Stirrup, Oliver ; Hughes, Joseph ; Parker, Matthew ; Partridge, David G. ; Shepherd, James G. ; Blackstone, James ; Coll, Francesc ; Keeley, Alexander ; Lindsey, Benjamin B. ; Marek, Aleksandra ; Peters, Christine ; Singer, Joshua B. ; Tamuri, Asif ; de Silva, Thushan ; Thomson, Emma C. ; Breuer, Judith ; COVID-19 Genomics UK COG-UK Consor ; COVID-19 Genomics UK (COG-UK) consortium ; The COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><description>Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult.
Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020.
Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission >= 8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%).
Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.65828</identifier><identifier>PMID: 34184637</identifier><language>eng</language><publisher>CAMBRIDGE: eLIFE SCIENCES PUBL LTD</publisher><subject>Algorithms ; Biology ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; Cross Infection - diagnosis ; Cross Infection - epidemiology ; Disease Outbreaks - statistics & numerical data ; Disease transmission ; Epidemiology ; Epidemiology and Global Health ; Feedback ; Genome, Viral ; Genomics ; Health care ; healthcare associated ; Hospitals - statistics & numerical data ; Humans ; Life Sciences & Biomedicine ; Life Sciences & Biomedicine - Other Topics ; Metadata ; Microbiology and Infectious Disease ; Mutation ; Mutation rates ; nosocomial ; Nosocomial infections ; outbreak ; Phylogeny ; Population Surveillance - methods ; Probability ; Public health ; Retrospective Studies ; SARS-CoV-2 ; SARS-CoV-2 - genetics ; Science & Technology ; Severe acute respiratory syndrome coronavirus 2 ; Teams ; Tools and Resources ; United Kingdom - epidemiology ; Whole Genome Sequencing</subject><ispartof>eLife, 2021-06, Vol.10, Article 65828</ispartof><rights>2021, Stirrup et al.</rights><rights>2021, Stirrup et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021, Stirrup et al 2021 Stirrup et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674770200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c517t-fe30b074d5a2eb404cb1bd82ec768a7eccd7e2ed94cafac1f9059cca382baffb3</citedby><cites>FETCH-LOGICAL-c517t-fe30b074d5a2eb404cb1bd82ec768a7eccd7e2ed94cafac1f9059cca382baffb3</cites><orcidid>0000-0002-6498-9212 ; 0000-0002-8705-3281 ; 0000-0003-4335-5269 ; 0000-0003-1482-0889 ; 0000-0003-3915-048X ; 0000-0001-9386-1157 ; 0000-0003-2556-2563 ; 0000-0002-0417-2016 ; 0000-0001-8246-0534 ; 0000-0003-4227-2592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285103/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285103/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34184637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stirrup, Oliver</creatorcontrib><creatorcontrib>Hughes, Joseph</creatorcontrib><creatorcontrib>Parker, Matthew</creatorcontrib><creatorcontrib>Partridge, David G.</creatorcontrib><creatorcontrib>Shepherd, James G.</creatorcontrib><creatorcontrib>Blackstone, James</creatorcontrib><creatorcontrib>Coll, Francesc</creatorcontrib><creatorcontrib>Keeley, Alexander</creatorcontrib><creatorcontrib>Lindsey, Benjamin B.</creatorcontrib><creatorcontrib>Marek, Aleksandra</creatorcontrib><creatorcontrib>Peters, Christine</creatorcontrib><creatorcontrib>Singer, Joshua B.</creatorcontrib><creatorcontrib>Tamuri, Asif</creatorcontrib><creatorcontrib>de Silva, Thushan</creatorcontrib><creatorcontrib>Thomson, Emma C.</creatorcontrib><creatorcontrib>Breuer, Judith</creatorcontrib><creatorcontrib>COVID-19 Genomics UK COG-UK Consor</creatorcontrib><creatorcontrib>COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><creatorcontrib>The COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><title>Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data</title><title>eLife</title><addtitle>ELIFE</addtitle><addtitle>Elife</addtitle><description>Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult.
Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020.
Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission >= 8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%).
Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.</description><subject>Algorithms</subject><subject>Biology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>Cross Infection - diagnosis</subject><subject>Cross Infection - epidemiology</subject><subject>Disease Outbreaks - statistics & numerical data</subject><subject>Disease transmission</subject><subject>Epidemiology</subject><subject>Epidemiology and Global Health</subject><subject>Feedback</subject><subject>Genome, Viral</subject><subject>Genomics</subject><subject>Health care</subject><subject>healthcare associated</subject><subject>Hospitals - statistics & numerical data</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Life Sciences & Biomedicine - Other Topics</subject><subject>Metadata</subject><subject>Microbiology and Infectious Disease</subject><subject>Mutation</subject><subject>Mutation rates</subject><subject>nosocomial</subject><subject>Nosocomial infections</subject><subject>outbreak</subject><subject>Phylogeny</subject><subject>Population Surveillance - methods</subject><subject>Probability</subject><subject>Public health</subject><subject>Retrospective Studies</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - genetics</subject><subject>Science & Technology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Teams</subject><subject>Tools and Resources</subject><subject>United Kingdom - epidemiology</subject><subject>Whole Genome Sequencing</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktFrFDEQxhdRbKl98l0WfBFka7LJbrIvQlmqFg6EVsW3kEwm15x7ybnZVfrfN3dXz9Yn85Jh5jcfw8xXFC8pORNNw9_hwjs8axtZyyfFcU0aUhHJvz99EB8VpymtSH6CS0m758UR41Tylonjwl7pjbelQ7RGw48yhvImpo2f9JDjhFN5fX51XfXxW1WXPjiEyed8CXFtfPBhWWLux7WPQ1x6yF062DLhzxkDbMtWT_pF8czpIeHp_X9SfP1w8aX_VC0-f7zszxcVNFRMlUNGTB7SNrpGwwkHQ42VNYJopRYIYAXWaDsO2mmgriNNB6CZrI12zrCT4nKva6Neqc3o13q8VVF7tUvEcan0OHkYUElCDWO1JUiQm9YaKVC0tGNOowDostb7vdZmNmu0gGEa9fBI9HEl-Bu1jL9UvkRDCcsCb-4Fxpi3kSa19glwGHTAOCdVN7xt801akdHX_6CrOI8hrypTneSMUdpk6u2egjGmNKI7DEOJ2ppB7cygdmbI9KuH8x_YP6f_K_cbTXQJfD4YHrDsllZwIUi9NQ7NtPx_us_22dqkj3OY2B0yodMk</recordid><startdate>20210629</startdate><enddate>20210629</enddate><creator>Stirrup, Oliver</creator><creator>Hughes, Joseph</creator><creator>Parker, Matthew</creator><creator>Partridge, David G.</creator><creator>Shepherd, James G.</creator><creator>Blackstone, James</creator><creator>Coll, Francesc</creator><creator>Keeley, Alexander</creator><creator>Lindsey, Benjamin B.</creator><creator>Marek, Aleksandra</creator><creator>Peters, Christine</creator><creator>Singer, Joshua B.</creator><creator>Tamuri, Asif</creator><creator>de Silva, Thushan</creator><creator>Thomson, Emma C.</creator><creator>Breuer, Judith</creator><general>eLIFE SCIENCES PUBL LTD</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6498-9212</orcidid><orcidid>https://orcid.org/0000-0002-8705-3281</orcidid><orcidid>https://orcid.org/0000-0003-4335-5269</orcidid><orcidid>https://orcid.org/0000-0003-1482-0889</orcidid><orcidid>https://orcid.org/0000-0003-3915-048X</orcidid><orcidid>https://orcid.org/0000-0001-9386-1157</orcidid><orcidid>https://orcid.org/0000-0003-2556-2563</orcidid><orcidid>https://orcid.org/0000-0002-0417-2016</orcidid><orcidid>https://orcid.org/0000-0001-8246-0534</orcidid><orcidid>https://orcid.org/0000-0003-4227-2592</orcidid></search><sort><creationdate>20210629</creationdate><title>Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data</title><author>Stirrup, Oliver ; Hughes, Joseph ; Parker, Matthew ; Partridge, David G. ; Shepherd, James G. ; Blackstone, James ; Coll, Francesc ; Keeley, Alexander ; Lindsey, Benjamin B. ; Marek, Aleksandra ; Peters, Christine ; Singer, Joshua B. ; Tamuri, Asif ; de Silva, Thushan ; Thomson, Emma C. ; Breuer, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-fe30b074d5a2eb404cb1bd82ec768a7eccd7e2ed94cafac1f9059cca382baffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>Cross Infection - diagnosis</topic><topic>Cross Infection - epidemiology</topic><topic>Disease Outbreaks - statistics & numerical data</topic><topic>Disease transmission</topic><topic>Epidemiology</topic><topic>Epidemiology and Global Health</topic><topic>Feedback</topic><topic>Genome, Viral</topic><topic>Genomics</topic><topic>Health care</topic><topic>healthcare associated</topic><topic>Hospitals - statistics & numerical data</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Life Sciences & Biomedicine - Other Topics</topic><topic>Metadata</topic><topic>Microbiology and Infectious Disease</topic><topic>Mutation</topic><topic>Mutation rates</topic><topic>nosocomial</topic><topic>Nosocomial infections</topic><topic>outbreak</topic><topic>Phylogeny</topic><topic>Population Surveillance - methods</topic><topic>Probability</topic><topic>Public health</topic><topic>Retrospective Studies</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - genetics</topic><topic>Science & Technology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Teams</topic><topic>Tools and Resources</topic><topic>United Kingdom - epidemiology</topic><topic>Whole Genome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stirrup, Oliver</creatorcontrib><creatorcontrib>Hughes, Joseph</creatorcontrib><creatorcontrib>Parker, Matthew</creatorcontrib><creatorcontrib>Partridge, David G.</creatorcontrib><creatorcontrib>Shepherd, James G.</creatorcontrib><creatorcontrib>Blackstone, James</creatorcontrib><creatorcontrib>Coll, Francesc</creatorcontrib><creatorcontrib>Keeley, Alexander</creatorcontrib><creatorcontrib>Lindsey, Benjamin B.</creatorcontrib><creatorcontrib>Marek, Aleksandra</creatorcontrib><creatorcontrib>Peters, Christine</creatorcontrib><creatorcontrib>Singer, Joshua B.</creatorcontrib><creatorcontrib>Tamuri, Asif</creatorcontrib><creatorcontrib>de Silva, Thushan</creatorcontrib><creatorcontrib>Thomson, Emma C.</creatorcontrib><creatorcontrib>Breuer, Judith</creatorcontrib><creatorcontrib>COVID-19 Genomics UK COG-UK Consor</creatorcontrib><creatorcontrib>COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><creatorcontrib>The COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stirrup, Oliver</au><au>Hughes, Joseph</au><au>Parker, Matthew</au><au>Partridge, David G.</au><au>Shepherd, James G.</au><au>Blackstone, James</au><au>Coll, Francesc</au><au>Keeley, Alexander</au><au>Lindsey, Benjamin B.</au><au>Marek, Aleksandra</au><au>Peters, Christine</au><au>Singer, Joshua B.</au><au>Tamuri, Asif</au><au>de Silva, Thushan</au><au>Thomson, Emma C.</au><au>Breuer, Judith</au><aucorp>COVID-19 Genomics UK COG-UK Consor</aucorp><aucorp>COVID-19 Genomics UK (COG-UK) consortium</aucorp><aucorp>The COVID-19 Genomics UK (COG-UK) consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data</atitle><jtitle>eLife</jtitle><stitle>ELIFE</stitle><addtitle>Elife</addtitle><date>2021-06-29</date><risdate>2021</risdate><volume>10</volume><artnum>65828</artnum><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult.
Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020.
Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission >= 8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%).
Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.</abstract><cop>CAMBRIDGE</cop><pub>eLIFE SCIENCES PUBL LTD</pub><pmid>34184637</pmid><doi>10.7554/eLife.65828</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6498-9212</orcidid><orcidid>https://orcid.org/0000-0002-8705-3281</orcidid><orcidid>https://orcid.org/0000-0003-4335-5269</orcidid><orcidid>https://orcid.org/0000-0003-1482-0889</orcidid><orcidid>https://orcid.org/0000-0003-3915-048X</orcidid><orcidid>https://orcid.org/0000-0001-9386-1157</orcidid><orcidid>https://orcid.org/0000-0003-2556-2563</orcidid><orcidid>https://orcid.org/0000-0002-0417-2016</orcidid><orcidid>https://orcid.org/0000-0001-8246-0534</orcidid><orcidid>https://orcid.org/0000-0003-4227-2592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2021-06, Vol.10, Article 65828 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_pubmed_primary_34184637 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Algorithms Biology Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 - epidemiology Cross Infection - diagnosis Cross Infection - epidemiology Disease Outbreaks - statistics & numerical data Disease transmission Epidemiology Epidemiology and Global Health Feedback Genome, Viral Genomics Health care healthcare associated Hospitals - statistics & numerical data Humans Life Sciences & Biomedicine Life Sciences & Biomedicine - Other Topics Metadata Microbiology and Infectious Disease Mutation Mutation rates nosocomial Nosocomial infections outbreak Phylogeny Population Surveillance - methods Probability Public health Retrospective Studies SARS-CoV-2 SARS-CoV-2 - genetics Science & Technology Severe acute respiratory syndrome coronavirus 2 Teams Tools and Resources United Kingdom - epidemiology Whole Genome Sequencing |
title | Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T05%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20feedback%20on%20hospital%20onset%20SARS-CoV-2%20infections%20combining%20epidemiological%20and%20sequencing%20data&rft.jtitle=eLife&rft.au=Stirrup,%20Oliver&rft.aucorp=COVID-19%20Genomics%20UK%20COG-UK%20Consor&rft.date=2021-06-29&rft.volume=10&rft.artnum=65828&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.65828&rft_dat=%3Cproquest_pubme%3E2598433115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598433115&rft_id=info:pmid/34184637&rft_doaj_id=oai_doaj_org_article_801b332d0e0e4b6db87e76193fae7cc9&rfr_iscdi=true |