Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data

Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2021-06, Vol.10, Article 65828
Hauptverfasser: Stirrup, Oliver, Hughes, Joseph, Parker, Matthew, Partridge, David G., Shepherd, James G., Blackstone, James, Coll, Francesc, Keeley, Alexander, Lindsey, Benjamin B., Marek, Aleksandra, Peters, Christine, Singer, Joshua B., Tamuri, Asif, de Silva, Thushan, Thomson, Emma C., Breuer, Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 10
creator Stirrup, Oliver
Hughes, Joseph
Parker, Matthew
Partridge, David G.
Shepherd, James G.
Blackstone, James
Coll, Francesc
Keeley, Alexander
Lindsey, Benjamin B.
Marek, Aleksandra
Peters, Christine
Singer, Joshua B.
Tamuri, Asif
de Silva, Thushan
Thomson, Emma C.
Breuer, Judith
description Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult. Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020. Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission >= 8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%). Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.
doi_str_mv 10.7554/eLife.65828
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34184637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_801b332d0e0e4b6db87e76193fae7cc9</doaj_id><sourcerecordid>2598433115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-fe30b074d5a2eb404cb1bd82ec768a7eccd7e2ed94cafac1f9059cca382baffb3</originalsourceid><addsrcrecordid>eNqNktFrFDEQxhdRbKl98l0WfBFka7LJbrIvQlmqFg6EVsW3kEwm15x7ybnZVfrfN3dXz9Yn85Jh5jcfw8xXFC8pORNNw9_hwjs8axtZyyfFcU0aUhHJvz99EB8VpymtSH6CS0m758UR41Tylonjwl7pjbelQ7RGw48yhvImpo2f9JDjhFN5fX51XfXxW1WXPjiEyed8CXFtfPBhWWLux7WPQ1x6yF062DLhzxkDbMtWT_pF8czpIeHp_X9SfP1w8aX_VC0-f7zszxcVNFRMlUNGTB7SNrpGwwkHQ42VNYJopRYIYAXWaDsO2mmgriNNB6CZrI12zrCT4nKva6Neqc3o13q8VVF7tUvEcan0OHkYUElCDWO1JUiQm9YaKVC0tGNOowDostb7vdZmNmu0gGEa9fBI9HEl-Bu1jL9UvkRDCcsCb-4Fxpi3kSa19glwGHTAOCdVN7xt801akdHX_6CrOI8hrypTneSMUdpk6u2egjGmNKI7DEOJ2ppB7cygdmbI9KuH8x_YP6f_K_cbTXQJfD4YHrDsllZwIUi9NQ7NtPx_us_22dqkj3OY2B0yodMk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598433115</pqid></control><display><type>article</type><title>Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Stirrup, Oliver ; Hughes, Joseph ; Parker, Matthew ; Partridge, David G. ; Shepherd, James G. ; Blackstone, James ; Coll, Francesc ; Keeley, Alexander ; Lindsey, Benjamin B. ; Marek, Aleksandra ; Peters, Christine ; Singer, Joshua B. ; Tamuri, Asif ; de Silva, Thushan ; Thomson, Emma C. ; Breuer, Judith</creator><creatorcontrib>Stirrup, Oliver ; Hughes, Joseph ; Parker, Matthew ; Partridge, David G. ; Shepherd, James G. ; Blackstone, James ; Coll, Francesc ; Keeley, Alexander ; Lindsey, Benjamin B. ; Marek, Aleksandra ; Peters, Christine ; Singer, Joshua B. ; Tamuri, Asif ; de Silva, Thushan ; Thomson, Emma C. ; Breuer, Judith ; COVID-19 Genomics UK COG-UK Consor ; COVID-19 Genomics UK (COG-UK) consortium ; The COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><description>Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult. Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test &gt;48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020. Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission &gt;= 8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was &gt;0.5 in 33/82 (40.2%). Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.65828</identifier><identifier>PMID: 34184637</identifier><language>eng</language><publisher>CAMBRIDGE: eLIFE SCIENCES PUBL LTD</publisher><subject>Algorithms ; Biology ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; Cross Infection - diagnosis ; Cross Infection - epidemiology ; Disease Outbreaks - statistics &amp; numerical data ; Disease transmission ; Epidemiology ; Epidemiology and Global Health ; Feedback ; Genome, Viral ; Genomics ; Health care ; healthcare associated ; Hospitals - statistics &amp; numerical data ; Humans ; Life Sciences &amp; Biomedicine ; Life Sciences &amp; Biomedicine - Other Topics ; Metadata ; Microbiology and Infectious Disease ; Mutation ; Mutation rates ; nosocomial ; Nosocomial infections ; outbreak ; Phylogeny ; Population Surveillance - methods ; Probability ; Public health ; Retrospective Studies ; SARS-CoV-2 ; SARS-CoV-2 - genetics ; Science &amp; Technology ; Severe acute respiratory syndrome coronavirus 2 ; Teams ; Tools and Resources ; United Kingdom - epidemiology ; Whole Genome Sequencing</subject><ispartof>eLife, 2021-06, Vol.10, Article 65828</ispartof><rights>2021, Stirrup et al.</rights><rights>2021, Stirrup et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021, Stirrup et al 2021 Stirrup et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674770200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c517t-fe30b074d5a2eb404cb1bd82ec768a7eccd7e2ed94cafac1f9059cca382baffb3</citedby><cites>FETCH-LOGICAL-c517t-fe30b074d5a2eb404cb1bd82ec768a7eccd7e2ed94cafac1f9059cca382baffb3</cites><orcidid>0000-0002-6498-9212 ; 0000-0002-8705-3281 ; 0000-0003-4335-5269 ; 0000-0003-1482-0889 ; 0000-0003-3915-048X ; 0000-0001-9386-1157 ; 0000-0003-2556-2563 ; 0000-0002-0417-2016 ; 0000-0001-8246-0534 ; 0000-0003-4227-2592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285103/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285103/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34184637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stirrup, Oliver</creatorcontrib><creatorcontrib>Hughes, Joseph</creatorcontrib><creatorcontrib>Parker, Matthew</creatorcontrib><creatorcontrib>Partridge, David G.</creatorcontrib><creatorcontrib>Shepherd, James G.</creatorcontrib><creatorcontrib>Blackstone, James</creatorcontrib><creatorcontrib>Coll, Francesc</creatorcontrib><creatorcontrib>Keeley, Alexander</creatorcontrib><creatorcontrib>Lindsey, Benjamin B.</creatorcontrib><creatorcontrib>Marek, Aleksandra</creatorcontrib><creatorcontrib>Peters, Christine</creatorcontrib><creatorcontrib>Singer, Joshua B.</creatorcontrib><creatorcontrib>Tamuri, Asif</creatorcontrib><creatorcontrib>de Silva, Thushan</creatorcontrib><creatorcontrib>Thomson, Emma C.</creatorcontrib><creatorcontrib>Breuer, Judith</creatorcontrib><creatorcontrib>COVID-19 Genomics UK COG-UK Consor</creatorcontrib><creatorcontrib>COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><creatorcontrib>The COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><title>Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data</title><title>eLife</title><addtitle>ELIFE</addtitle><addtitle>Elife</addtitle><description>Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult. Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test &gt;48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020. Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission &gt;= 8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was &gt;0.5 in 33/82 (40.2%). Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.</description><subject>Algorithms</subject><subject>Biology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>Cross Infection - diagnosis</subject><subject>Cross Infection - epidemiology</subject><subject>Disease Outbreaks - statistics &amp; numerical data</subject><subject>Disease transmission</subject><subject>Epidemiology</subject><subject>Epidemiology and Global Health</subject><subject>Feedback</subject><subject>Genome, Viral</subject><subject>Genomics</subject><subject>Health care</subject><subject>healthcare associated</subject><subject>Hospitals - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life Sciences &amp; Biomedicine - Other Topics</subject><subject>Metadata</subject><subject>Microbiology and Infectious Disease</subject><subject>Mutation</subject><subject>Mutation rates</subject><subject>nosocomial</subject><subject>Nosocomial infections</subject><subject>outbreak</subject><subject>Phylogeny</subject><subject>Population Surveillance - methods</subject><subject>Probability</subject><subject>Public health</subject><subject>Retrospective Studies</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - genetics</subject><subject>Science &amp; Technology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Teams</subject><subject>Tools and Resources</subject><subject>United Kingdom - epidemiology</subject><subject>Whole Genome Sequencing</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktFrFDEQxhdRbKl98l0WfBFka7LJbrIvQlmqFg6EVsW3kEwm15x7ybnZVfrfN3dXz9Yn85Jh5jcfw8xXFC8pORNNw9_hwjs8axtZyyfFcU0aUhHJvz99EB8VpymtSH6CS0m758UR41Tylonjwl7pjbelQ7RGw48yhvImpo2f9JDjhFN5fX51XfXxW1WXPjiEyed8CXFtfPBhWWLux7WPQ1x6yF062DLhzxkDbMtWT_pF8czpIeHp_X9SfP1w8aX_VC0-f7zszxcVNFRMlUNGTB7SNrpGwwkHQ42VNYJopRYIYAXWaDsO2mmgriNNB6CZrI12zrCT4nKva6Neqc3o13q8VVF7tUvEcan0OHkYUElCDWO1JUiQm9YaKVC0tGNOowDostb7vdZmNmu0gGEa9fBI9HEl-Bu1jL9UvkRDCcsCb-4Fxpi3kSa19glwGHTAOCdVN7xt801akdHX_6CrOI8hrypTneSMUdpk6u2egjGmNKI7DEOJ2ppB7cygdmbI9KuH8x_YP6f_K_cbTXQJfD4YHrDsllZwIUi9NQ7NtPx_us_22dqkj3OY2B0yodMk</recordid><startdate>20210629</startdate><enddate>20210629</enddate><creator>Stirrup, Oliver</creator><creator>Hughes, Joseph</creator><creator>Parker, Matthew</creator><creator>Partridge, David G.</creator><creator>Shepherd, James G.</creator><creator>Blackstone, James</creator><creator>Coll, Francesc</creator><creator>Keeley, Alexander</creator><creator>Lindsey, Benjamin B.</creator><creator>Marek, Aleksandra</creator><creator>Peters, Christine</creator><creator>Singer, Joshua B.</creator><creator>Tamuri, Asif</creator><creator>de Silva, Thushan</creator><creator>Thomson, Emma C.</creator><creator>Breuer, Judith</creator><general>eLIFE SCIENCES PUBL LTD</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6498-9212</orcidid><orcidid>https://orcid.org/0000-0002-8705-3281</orcidid><orcidid>https://orcid.org/0000-0003-4335-5269</orcidid><orcidid>https://orcid.org/0000-0003-1482-0889</orcidid><orcidid>https://orcid.org/0000-0003-3915-048X</orcidid><orcidid>https://orcid.org/0000-0001-9386-1157</orcidid><orcidid>https://orcid.org/0000-0003-2556-2563</orcidid><orcidid>https://orcid.org/0000-0002-0417-2016</orcidid><orcidid>https://orcid.org/0000-0001-8246-0534</orcidid><orcidid>https://orcid.org/0000-0003-4227-2592</orcidid></search><sort><creationdate>20210629</creationdate><title>Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data</title><author>Stirrup, Oliver ; Hughes, Joseph ; Parker, Matthew ; Partridge, David G. ; Shepherd, James G. ; Blackstone, James ; Coll, Francesc ; Keeley, Alexander ; Lindsey, Benjamin B. ; Marek, Aleksandra ; Peters, Christine ; Singer, Joshua B. ; Tamuri, Asif ; de Silva, Thushan ; Thomson, Emma C. ; Breuer, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-fe30b074d5a2eb404cb1bd82ec768a7eccd7e2ed94cafac1f9059cca382baffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>Cross Infection - diagnosis</topic><topic>Cross Infection - epidemiology</topic><topic>Disease Outbreaks - statistics &amp; numerical data</topic><topic>Disease transmission</topic><topic>Epidemiology</topic><topic>Epidemiology and Global Health</topic><topic>Feedback</topic><topic>Genome, Viral</topic><topic>Genomics</topic><topic>Health care</topic><topic>healthcare associated</topic><topic>Hospitals - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life Sciences &amp; Biomedicine - Other Topics</topic><topic>Metadata</topic><topic>Microbiology and Infectious Disease</topic><topic>Mutation</topic><topic>Mutation rates</topic><topic>nosocomial</topic><topic>Nosocomial infections</topic><topic>outbreak</topic><topic>Phylogeny</topic><topic>Population Surveillance - methods</topic><topic>Probability</topic><topic>Public health</topic><topic>Retrospective Studies</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - genetics</topic><topic>Science &amp; Technology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Teams</topic><topic>Tools and Resources</topic><topic>United Kingdom - epidemiology</topic><topic>Whole Genome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stirrup, Oliver</creatorcontrib><creatorcontrib>Hughes, Joseph</creatorcontrib><creatorcontrib>Parker, Matthew</creatorcontrib><creatorcontrib>Partridge, David G.</creatorcontrib><creatorcontrib>Shepherd, James G.</creatorcontrib><creatorcontrib>Blackstone, James</creatorcontrib><creatorcontrib>Coll, Francesc</creatorcontrib><creatorcontrib>Keeley, Alexander</creatorcontrib><creatorcontrib>Lindsey, Benjamin B.</creatorcontrib><creatorcontrib>Marek, Aleksandra</creatorcontrib><creatorcontrib>Peters, Christine</creatorcontrib><creatorcontrib>Singer, Joshua B.</creatorcontrib><creatorcontrib>Tamuri, Asif</creatorcontrib><creatorcontrib>de Silva, Thushan</creatorcontrib><creatorcontrib>Thomson, Emma C.</creatorcontrib><creatorcontrib>Breuer, Judith</creatorcontrib><creatorcontrib>COVID-19 Genomics UK COG-UK Consor</creatorcontrib><creatorcontrib>COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><creatorcontrib>The COVID-19 Genomics UK (COG-UK) consortium</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stirrup, Oliver</au><au>Hughes, Joseph</au><au>Parker, Matthew</au><au>Partridge, David G.</au><au>Shepherd, James G.</au><au>Blackstone, James</au><au>Coll, Francesc</au><au>Keeley, Alexander</au><au>Lindsey, Benjamin B.</au><au>Marek, Aleksandra</au><au>Peters, Christine</au><au>Singer, Joshua B.</au><au>Tamuri, Asif</au><au>de Silva, Thushan</au><au>Thomson, Emma C.</au><au>Breuer, Judith</au><aucorp>COVID-19 Genomics UK COG-UK Consor</aucorp><aucorp>COVID-19 Genomics UK (COG-UK) consortium</aucorp><aucorp>The COVID-19 Genomics UK (COG-UK) consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data</atitle><jtitle>eLife</jtitle><stitle>ELIFE</stitle><addtitle>Elife</addtitle><date>2021-06-29</date><risdate>2021</risdate><volume>10</volume><artnum>65828</artnum><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult. Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test &gt;48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020. Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission &gt;= 8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was &gt;0.5 in 33/82 (40.2%). Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period.</abstract><cop>CAMBRIDGE</cop><pub>eLIFE SCIENCES PUBL LTD</pub><pmid>34184637</pmid><doi>10.7554/eLife.65828</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6498-9212</orcidid><orcidid>https://orcid.org/0000-0002-8705-3281</orcidid><orcidid>https://orcid.org/0000-0003-4335-5269</orcidid><orcidid>https://orcid.org/0000-0003-1482-0889</orcidid><orcidid>https://orcid.org/0000-0003-3915-048X</orcidid><orcidid>https://orcid.org/0000-0001-9386-1157</orcidid><orcidid>https://orcid.org/0000-0003-2556-2563</orcidid><orcidid>https://orcid.org/0000-0002-0417-2016</orcidid><orcidid>https://orcid.org/0000-0001-8246-0534</orcidid><orcidid>https://orcid.org/0000-0003-4227-2592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2021-06, Vol.10, Article 65828
issn 2050-084X
2050-084X
language eng
recordid cdi_pubmed_primary_34184637
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Algorithms
Biology
Coronaviruses
COVID-19
COVID-19 - diagnosis
COVID-19 - epidemiology
Cross Infection - diagnosis
Cross Infection - epidemiology
Disease Outbreaks - statistics & numerical data
Disease transmission
Epidemiology
Epidemiology and Global Health
Feedback
Genome, Viral
Genomics
Health care
healthcare associated
Hospitals - statistics & numerical data
Humans
Life Sciences & Biomedicine
Life Sciences & Biomedicine - Other Topics
Metadata
Microbiology and Infectious Disease
Mutation
Mutation rates
nosocomial
Nosocomial infections
outbreak
Phylogeny
Population Surveillance - methods
Probability
Public health
Retrospective Studies
SARS-CoV-2
SARS-CoV-2 - genetics
Science & Technology
Severe acute respiratory syndrome coronavirus 2
Teams
Tools and Resources
United Kingdom - epidemiology
Whole Genome Sequencing
title Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T05%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20feedback%20on%20hospital%20onset%20SARS-CoV-2%20infections%20combining%20epidemiological%20and%20sequencing%20data&rft.jtitle=eLife&rft.au=Stirrup,%20Oliver&rft.aucorp=COVID-19%20Genomics%20UK%20COG-UK%20Consor&rft.date=2021-06-29&rft.volume=10&rft.artnum=65828&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.65828&rft_dat=%3Cproquest_pubme%3E2598433115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598433115&rft_id=info:pmid/34184637&rft_doaj_id=oai_doaj_org_article_801b332d0e0e4b6db87e76193fae7cc9&rfr_iscdi=true