Diagonal Recurrent Neural Network-Based Hysteresis Modeling

The Preisach model and the neural networks are two of the most popular strategies to model hysteresis. In this article, we first mathematically prove that the rate-independent Preisach model is actually a diagonal recurrent neural network (dRNN) with the binary step activation function. For the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-12, Vol.33 (12), p.7502-7512
Hauptverfasser: Chen, Guangzeng, Chen, Guangke, Lou, Yunjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7512
container_issue 12
container_start_page 7502
container_title IEEE transaction on neural networks and learning systems
container_volume 33
creator Chen, Guangzeng
Chen, Guangke
Lou, Yunjiang
description The Preisach model and the neural networks are two of the most popular strategies to model hysteresis. In this article, we first mathematically prove that the rate-independent Preisach model is actually a diagonal recurrent neural network (dRNN) with the binary step activation function. For the first time, the hysteresis nature and conditions of the classical dRNN with the tanh activation function are mathematically discovered and investigated, instead of using the common black-box approach and its variants. It is shown that the dRNN neuron is a versatile rate-dependent hysteresis system under specific conditions. The dRNN composed of those neurons can be used for modeling the rate-dependent hysteresis and it can approximate the Preisach model with arbitrary precision with specific parameters for rate-independent hysteresis modeling. Experiments show that the classical dRNN models both kinds of hysteresis more accurately and efficiently than the Preisach model.
doi_str_mv 10.1109/TNNLS.2021.3085321
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_34143742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9460309</ieee_id><sourcerecordid>2742703972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b394a3892f11a48a5a45f2142b85b09db342f97659a0b6a569bc3b148d12f0bb3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKn9AwoS8OIldT-TLJ60flSoEbSCt2U3mZTUNKm7CdJ_79bWHtzLLDPPvDAPQqcEjwjB8mqWptO3EcWUjBhOBKPkAPUpiWhIWZIc7v_xRw8NnVtg_yIsIi6PUY9xwlnMaR9d35V63tS6Cl4h66yFug1S6KxvpNB-N_YzvNUO8mCydi1YcKULnpscqrKen6CjQlcOhrs6QO8P97PxJJy-PD6Nb6ZhxgRpQ8Mk1yyRtCBE80QLzUVBCacmEQbL3DBOCxlHQmpsIi0iaTJmCE9yQgtsDBugy23uyjZfHbhWLUuXQVXpGprOKSo448KnxB69-Icums768zzl740xkzH1FN1SmW2cs1ColS2X2q4VwWpjV_3aVRu7amfXL53vojuzhHy_8ufSA2dboASA_VjyCDMs2Q8MCXvX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742703972</pqid></control><display><type>article</type><title>Diagonal Recurrent Neural Network-Based Hysteresis Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Guangzeng ; Chen, Guangke ; Lou, Yunjiang</creator><creatorcontrib>Chen, Guangzeng ; Chen, Guangke ; Lou, Yunjiang</creatorcontrib><description>The Preisach model and the neural networks are two of the most popular strategies to model hysteresis. In this article, we first mathematically prove that the rate-independent Preisach model is actually a diagonal recurrent neural network (dRNN) with the binary step activation function. For the first time, the hysteresis nature and conditions of the classical dRNN with the tanh activation function are mathematically discovered and investigated, instead of using the common black-box approach and its variants. It is shown that the dRNN neuron is a versatile rate-dependent hysteresis system under specific conditions. The dRNN composed of those neurons can be used for modeling the rate-dependent hysteresis and it can approximate the Preisach model with arbitrary precision with specific parameters for rate-independent hysteresis modeling. Experiments show that the classical dRNN models both kinds of hysteresis more accurately and efficiently than the Preisach model.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3085321</identifier><identifier>PMID: 34143742</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Hysteresis ; Hysteresis modeling ; Hysteresis models ; Mathematical models ; Modelling ; Neural networks ; Neural Networks, Computer ; Neurons ; Preisach model ; Preisach's theory ; recurrent neural network (RNN) ; Recurrent neural networks ; Switches</subject><ispartof>IEEE transaction on neural networks and learning systems, 2022-12, Vol.33 (12), p.7502-7512</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b394a3892f11a48a5a45f2142b85b09db342f97659a0b6a569bc3b148d12f0bb3</citedby><cites>FETCH-LOGICAL-c351t-b394a3892f11a48a5a45f2142b85b09db342f97659a0b6a569bc3b148d12f0bb3</cites><orcidid>0000-0002-4767-5908 ; 0000-0001-6873-747X ; 0000-0001-8203-7795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9460309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9460309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34143742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guangzeng</creatorcontrib><creatorcontrib>Chen, Guangke</creatorcontrib><creatorcontrib>Lou, Yunjiang</creatorcontrib><title>Diagonal Recurrent Neural Network-Based Hysteresis Modeling</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>The Preisach model and the neural networks are two of the most popular strategies to model hysteresis. In this article, we first mathematically prove that the rate-independent Preisach model is actually a diagonal recurrent neural network (dRNN) with the binary step activation function. For the first time, the hysteresis nature and conditions of the classical dRNN with the tanh activation function are mathematically discovered and investigated, instead of using the common black-box approach and its variants. It is shown that the dRNN neuron is a versatile rate-dependent hysteresis system under specific conditions. The dRNN composed of those neurons can be used for modeling the rate-dependent hysteresis and it can approximate the Preisach model with arbitrary precision with specific parameters for rate-independent hysteresis modeling. Experiments show that the classical dRNN models both kinds of hysteresis more accurately and efficiently than the Preisach model.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Hysteresis</subject><subject>Hysteresis modeling</subject><subject>Hysteresis models</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurons</subject><subject>Preisach model</subject><subject>Preisach's theory</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>Switches</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbKn9AwoS8OIldT-TLJ60flSoEbSCt2U3mZTUNKm7CdJ_79bWHtzLLDPPvDAPQqcEjwjB8mqWptO3EcWUjBhOBKPkAPUpiWhIWZIc7v_xRw8NnVtg_yIsIi6PUY9xwlnMaR9d35V63tS6Cl4h66yFug1S6KxvpNB-N_YzvNUO8mCydi1YcKULnpscqrKen6CjQlcOhrs6QO8P97PxJJy-PD6Nb6ZhxgRpQ8Mk1yyRtCBE80QLzUVBCacmEQbL3DBOCxlHQmpsIi0iaTJmCE9yQgtsDBugy23uyjZfHbhWLUuXQVXpGprOKSo448KnxB69-Icums768zzl740xkzH1FN1SmW2cs1ColS2X2q4VwWpjV_3aVRu7amfXL53vojuzhHy_8ufSA2dboASA_VjyCDMs2Q8MCXvX</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chen, Guangzeng</creator><creator>Chen, Guangke</creator><creator>Lou, Yunjiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4767-5908</orcidid><orcidid>https://orcid.org/0000-0001-6873-747X</orcidid><orcidid>https://orcid.org/0000-0001-8203-7795</orcidid></search><sort><creationdate>20221201</creationdate><title>Diagonal Recurrent Neural Network-Based Hysteresis Modeling</title><author>Chen, Guangzeng ; Chen, Guangke ; Lou, Yunjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b394a3892f11a48a5a45f2142b85b09db342f97659a0b6a569bc3b148d12f0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Hysteresis</topic><topic>Hysteresis modeling</topic><topic>Hysteresis models</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurons</topic><topic>Preisach model</topic><topic>Preisach's theory</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guangzeng</creatorcontrib><creatorcontrib>Chen, Guangke</creatorcontrib><creatorcontrib>Lou, Yunjiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Guangzeng</au><au>Chen, Guangke</au><au>Lou, Yunjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagonal Recurrent Neural Network-Based Hysteresis Modeling</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>33</volume><issue>12</issue><spage>7502</spage><epage>7512</epage><pages>7502-7512</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>The Preisach model and the neural networks are two of the most popular strategies to model hysteresis. In this article, we first mathematically prove that the rate-independent Preisach model is actually a diagonal recurrent neural network (dRNN) with the binary step activation function. For the first time, the hysteresis nature and conditions of the classical dRNN with the tanh activation function are mathematically discovered and investigated, instead of using the common black-box approach and its variants. It is shown that the dRNN neuron is a versatile rate-dependent hysteresis system under specific conditions. The dRNN composed of those neurons can be used for modeling the rate-dependent hysteresis and it can approximate the Preisach model with arbitrary precision with specific parameters for rate-independent hysteresis modeling. Experiments show that the classical dRNN models both kinds of hysteresis more accurately and efficiently than the Preisach model.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34143742</pmid><doi>10.1109/TNNLS.2021.3085321</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4767-5908</orcidid><orcidid>https://orcid.org/0000-0001-6873-747X</orcidid><orcidid>https://orcid.org/0000-0001-8203-7795</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2022-12, Vol.33 (12), p.7502-7512
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_34143742
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Computational modeling
Hysteresis
Hysteresis modeling
Hysteresis models
Mathematical models
Modelling
Neural networks
Neural Networks, Computer
Neurons
Preisach model
Preisach's theory
recurrent neural network (RNN)
Recurrent neural networks
Switches
title Diagonal Recurrent Neural Network-Based Hysteresis Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagonal%20Recurrent%20Neural%20Network-Based%20Hysteresis%20Modeling&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chen,%20Guangzeng&rft.date=2022-12-01&rft.volume=33&rft.issue=12&rft.spage=7502&rft.epage=7512&rft.pages=7502-7512&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3085321&rft_dat=%3Cproquest_RIE%3E2742703972%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742703972&rft_id=info:pmid/34143742&rft_ieee_id=9460309&rfr_iscdi=true