Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts
Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2021-04, Vol.12 (2), p.6879-6889 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6889 |
---|---|
container_issue | 2 |
container_start_page | 6879 |
container_title | Chemical science (Cambridge) |
container_volume | 12 |
creator | Gallarati, Simone Fabregat, Raimon Laplaza, Rubén Bhattacharjee, Sinjini Wodrich, Matthew D Corminboeuf, Clemence |
description | Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol
−1
were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information.
A machine learning model for enantioselectivity prediction using reaction-based molecular representations. |
doi_str_mv | 10.1039/d1sc00482d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34123316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540718724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-73e9238abd73aec257378b4a973e2ce9fbe755911aa56457887d895b50ee47613</originalsourceid><addsrcrecordid>eNpdkktrGzEUhUVpaUKaTfctA92EwLR6WtKmEJxXIVBI2rW4o7ljK4wlVxoH_O-j1In70EbSPd89HHFFyHtGPzMq7JeeFU-pNLx_RQ45laydKWFf78-cHpDjUu5pXUIwxfVbciAk4_UyOyTLWwQ_hRTbDgr2zQr8MkRsRoQcQ1w0GdcZC8YJnqjSDCk3tdKH2lXlaYkNRohVLDhiLT6EadukoUl5ATF5mGDclqm8I28GGAseP-9H5OflxY_5dXvz_erb_Oym9dLKqdUCLRcGul4LQM-VFtp0EmwVuEc7dKiVsowBqJlU2hjdG6s6RRGlnjFxRL7ufNebboW9r8kzjG6dwwry1iUI7l8lhqVbpAdnmBJU22pw8myQ068NlsmtQvE4jhAxbYrjSlLNjOayop_-Q-_TJsf6vEoJzigTRlTqdEf5nErJOOzDMOqeZujO2d389wzPK_zx7_h79GViFfiwA3Lxe_XPJxCPKeKjAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532101383</pqid></control><display><type>article</type><title>Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gallarati, Simone ; Fabregat, Raimon ; Laplaza, Rubén ; Bhattacharjee, Sinjini ; Wodrich, Matthew D ; Corminboeuf, Clemence</creator><creatorcontrib>Gallarati, Simone ; Fabregat, Raimon ; Laplaza, Rubén ; Bhattacharjee, Sinjini ; Wodrich, Matthew D ; Corminboeuf, Clemence</creatorcontrib><description>Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol
−1
were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information.
A machine learning model for enantioselectivity prediction using reaction-based molecular representations.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d1sc00482d</identifier><identifier>PMID: 34123316</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Asymmetry ; Catalysis ; Chemistry ; Enantiomers ; Machine learning ; Molecular structure ; Quantum chemistry ; Representations ; Screening</subject><ispartof>Chemical science (Cambridge), 2021-04, Vol.12 (2), p.6879-6889</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-73e9238abd73aec257378b4a973e2ce9fbe755911aa56457887d895b50ee47613</citedby><cites>FETCH-LOGICAL-c494t-73e9238abd73aec257378b4a973e2ce9fbe755911aa56457887d895b50ee47613</cites><orcidid>0000-0001-6315-4398 ; 0000-0002-6006-671X ; 0000-0002-7946-817X ; 0000-0002-2349-1944 ; 0000-0001-5830-7425 ; 0000-0001-7993-2879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34123316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallarati, Simone</creatorcontrib><creatorcontrib>Fabregat, Raimon</creatorcontrib><creatorcontrib>Laplaza, Rubén</creatorcontrib><creatorcontrib>Bhattacharjee, Sinjini</creatorcontrib><creatorcontrib>Wodrich, Matthew D</creatorcontrib><creatorcontrib>Corminboeuf, Clemence</creatorcontrib><title>Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol
−1
were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information.
A machine learning model for enantioselectivity prediction using reaction-based molecular representations.</description><subject>Asymmetry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Enantiomers</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Quantum chemistry</subject><subject>Representations</subject><subject>Screening</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkktrGzEUhUVpaUKaTfctA92EwLR6WtKmEJxXIVBI2rW4o7ljK4wlVxoH_O-j1In70EbSPd89HHFFyHtGPzMq7JeeFU-pNLx_RQ45laydKWFf78-cHpDjUu5pXUIwxfVbciAk4_UyOyTLWwQ_hRTbDgr2zQr8MkRsRoQcQ1w0GdcZC8YJnqjSDCk3tdKH2lXlaYkNRohVLDhiLT6EadukoUl5ATF5mGDclqm8I28GGAseP-9H5OflxY_5dXvz_erb_Oym9dLKqdUCLRcGul4LQM-VFtp0EmwVuEc7dKiVsowBqJlU2hjdG6s6RRGlnjFxRL7ufNebboW9r8kzjG6dwwry1iUI7l8lhqVbpAdnmBJU22pw8myQ068NlsmtQvE4jhAxbYrjSlLNjOayop_-Q-_TJsf6vEoJzigTRlTqdEf5nErJOOzDMOqeZujO2d389wzPK_zx7_h79GViFfiwA3Lxe_XPJxCPKeKjAA</recordid><startdate>20210403</startdate><enddate>20210403</enddate><creator>Gallarati, Simone</creator><creator>Fabregat, Raimon</creator><creator>Laplaza, Rubén</creator><creator>Bhattacharjee, Sinjini</creator><creator>Wodrich, Matthew D</creator><creator>Corminboeuf, Clemence</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6315-4398</orcidid><orcidid>https://orcid.org/0000-0002-6006-671X</orcidid><orcidid>https://orcid.org/0000-0002-7946-817X</orcidid><orcidid>https://orcid.org/0000-0002-2349-1944</orcidid><orcidid>https://orcid.org/0000-0001-5830-7425</orcidid><orcidid>https://orcid.org/0000-0001-7993-2879</orcidid></search><sort><creationdate>20210403</creationdate><title>Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts</title><author>Gallarati, Simone ; Fabregat, Raimon ; Laplaza, Rubén ; Bhattacharjee, Sinjini ; Wodrich, Matthew D ; Corminboeuf, Clemence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-73e9238abd73aec257378b4a973e2ce9fbe755911aa56457887d895b50ee47613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Enantiomers</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Quantum chemistry</topic><topic>Representations</topic><topic>Screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallarati, Simone</creatorcontrib><creatorcontrib>Fabregat, Raimon</creatorcontrib><creatorcontrib>Laplaza, Rubén</creatorcontrib><creatorcontrib>Bhattacharjee, Sinjini</creatorcontrib><creatorcontrib>Wodrich, Matthew D</creatorcontrib><creatorcontrib>Corminboeuf, Clemence</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallarati, Simone</au><au>Fabregat, Raimon</au><au>Laplaza, Rubén</au><au>Bhattacharjee, Sinjini</au><au>Wodrich, Matthew D</au><au>Corminboeuf, Clemence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2021-04-03</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>6879</spage><epage>6889</epage><pages>6879-6889</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol
−1
were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information.
A machine learning model for enantioselectivity prediction using reaction-based molecular representations.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34123316</pmid><doi>10.1039/d1sc00482d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6315-4398</orcidid><orcidid>https://orcid.org/0000-0002-6006-671X</orcidid><orcidid>https://orcid.org/0000-0002-7946-817X</orcidid><orcidid>https://orcid.org/0000-0002-2349-1944</orcidid><orcidid>https://orcid.org/0000-0001-5830-7425</orcidid><orcidid>https://orcid.org/0000-0001-7993-2879</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2021-04, Vol.12 (2), p.6879-6889 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmed_primary_34123316 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Asymmetry Catalysis Chemistry Enantiomers Machine learning Molecular structure Quantum chemistry Representations Screening |
title | Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction-based%20machine%20learning%20representations%20for%20predicting%20the%20enantioselectivity%20of%20organocatalysts&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Gallarati,%20Simone&rft.date=2021-04-03&rft.volume=12&rft.issue=2&rft.spage=6879&rft.epage=6889&rft.pages=6879-6889&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d1sc00482d&rft_dat=%3Cproquest_pubme%3E2540718724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532101383&rft_id=info:pmid/34123316&rfr_iscdi=true |