Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts

Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2021-04, Vol.12 (2), p.6879-6889
Hauptverfasser: Gallarati, Simone, Fabregat, Raimon, Laplaza, Rubén, Bhattacharjee, Sinjini, Wodrich, Matthew D, Corminboeuf, Clemence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6889
container_issue 2
container_start_page 6879
container_title Chemical science (Cambridge)
container_volume 12
creator Gallarati, Simone
Fabregat, Raimon
Laplaza, Rubén
Bhattacharjee, Sinjini
Wodrich, Matthew D
Corminboeuf, Clemence
description Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol −1 were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information. A machine learning model for enantioselectivity prediction using reaction-based molecular representations.
doi_str_mv 10.1039/d1sc00482d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34123316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540718724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-73e9238abd73aec257378b4a973e2ce9fbe755911aa56457887d895b50ee47613</originalsourceid><addsrcrecordid>eNpdkktrGzEUhUVpaUKaTfctA92EwLR6WtKmEJxXIVBI2rW4o7ljK4wlVxoH_O-j1In70EbSPd89HHFFyHtGPzMq7JeeFU-pNLx_RQ45laydKWFf78-cHpDjUu5pXUIwxfVbciAk4_UyOyTLWwQ_hRTbDgr2zQr8MkRsRoQcQ1w0GdcZC8YJnqjSDCk3tdKH2lXlaYkNRohVLDhiLT6EadukoUl5ATF5mGDclqm8I28GGAseP-9H5OflxY_5dXvz_erb_Oym9dLKqdUCLRcGul4LQM-VFtp0EmwVuEc7dKiVsowBqJlU2hjdG6s6RRGlnjFxRL7ufNebboW9r8kzjG6dwwry1iUI7l8lhqVbpAdnmBJU22pw8myQ068NlsmtQvE4jhAxbYrjSlLNjOayop_-Q-_TJsf6vEoJzigTRlTqdEf5nErJOOzDMOqeZujO2d389wzPK_zx7_h79GViFfiwA3Lxe_XPJxCPKeKjAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532101383</pqid></control><display><type>article</type><title>Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gallarati, Simone ; Fabregat, Raimon ; Laplaza, Rubén ; Bhattacharjee, Sinjini ; Wodrich, Matthew D ; Corminboeuf, Clemence</creator><creatorcontrib>Gallarati, Simone ; Fabregat, Raimon ; Laplaza, Rubén ; Bhattacharjee, Sinjini ; Wodrich, Matthew D ; Corminboeuf, Clemence</creatorcontrib><description>Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol −1 were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information. A machine learning model for enantioselectivity prediction using reaction-based molecular representations.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d1sc00482d</identifier><identifier>PMID: 34123316</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Asymmetry ; Catalysis ; Chemistry ; Enantiomers ; Machine learning ; Molecular structure ; Quantum chemistry ; Representations ; Screening</subject><ispartof>Chemical science (Cambridge), 2021-04, Vol.12 (2), p.6879-6889</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-73e9238abd73aec257378b4a973e2ce9fbe755911aa56457887d895b50ee47613</citedby><cites>FETCH-LOGICAL-c494t-73e9238abd73aec257378b4a973e2ce9fbe755911aa56457887d895b50ee47613</cites><orcidid>0000-0001-6315-4398 ; 0000-0002-6006-671X ; 0000-0002-7946-817X ; 0000-0002-2349-1944 ; 0000-0001-5830-7425 ; 0000-0001-7993-2879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34123316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallarati, Simone</creatorcontrib><creatorcontrib>Fabregat, Raimon</creatorcontrib><creatorcontrib>Laplaza, Rubén</creatorcontrib><creatorcontrib>Bhattacharjee, Sinjini</creatorcontrib><creatorcontrib>Wodrich, Matthew D</creatorcontrib><creatorcontrib>Corminboeuf, Clemence</creatorcontrib><title>Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol −1 were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information. A machine learning model for enantioselectivity prediction using reaction-based molecular representations.</description><subject>Asymmetry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Enantiomers</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Quantum chemistry</subject><subject>Representations</subject><subject>Screening</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkktrGzEUhUVpaUKaTfctA92EwLR6WtKmEJxXIVBI2rW4o7ljK4wlVxoH_O-j1In70EbSPd89HHFFyHtGPzMq7JeeFU-pNLx_RQ45laydKWFf78-cHpDjUu5pXUIwxfVbciAk4_UyOyTLWwQ_hRTbDgr2zQr8MkRsRoQcQ1w0GdcZC8YJnqjSDCk3tdKH2lXlaYkNRohVLDhiLT6EadukoUl5ATF5mGDclqm8I28GGAseP-9H5OflxY_5dXvz_erb_Oym9dLKqdUCLRcGul4LQM-VFtp0EmwVuEc7dKiVsowBqJlU2hjdG6s6RRGlnjFxRL7ufNebboW9r8kzjG6dwwry1iUI7l8lhqVbpAdnmBJU22pw8myQ068NlsmtQvE4jhAxbYrjSlLNjOayop_-Q-_TJsf6vEoJzigTRlTqdEf5nErJOOzDMOqeZujO2d389wzPK_zx7_h79GViFfiwA3Lxe_XPJxCPKeKjAA</recordid><startdate>20210403</startdate><enddate>20210403</enddate><creator>Gallarati, Simone</creator><creator>Fabregat, Raimon</creator><creator>Laplaza, Rubén</creator><creator>Bhattacharjee, Sinjini</creator><creator>Wodrich, Matthew D</creator><creator>Corminboeuf, Clemence</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6315-4398</orcidid><orcidid>https://orcid.org/0000-0002-6006-671X</orcidid><orcidid>https://orcid.org/0000-0002-7946-817X</orcidid><orcidid>https://orcid.org/0000-0002-2349-1944</orcidid><orcidid>https://orcid.org/0000-0001-5830-7425</orcidid><orcidid>https://orcid.org/0000-0001-7993-2879</orcidid></search><sort><creationdate>20210403</creationdate><title>Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts</title><author>Gallarati, Simone ; Fabregat, Raimon ; Laplaza, Rubén ; Bhattacharjee, Sinjini ; Wodrich, Matthew D ; Corminboeuf, Clemence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-73e9238abd73aec257378b4a973e2ce9fbe755911aa56457887d895b50ee47613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Enantiomers</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Quantum chemistry</topic><topic>Representations</topic><topic>Screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallarati, Simone</creatorcontrib><creatorcontrib>Fabregat, Raimon</creatorcontrib><creatorcontrib>Laplaza, Rubén</creatorcontrib><creatorcontrib>Bhattacharjee, Sinjini</creatorcontrib><creatorcontrib>Wodrich, Matthew D</creatorcontrib><creatorcontrib>Corminboeuf, Clemence</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallarati, Simone</au><au>Fabregat, Raimon</au><au>Laplaza, Rubén</au><au>Bhattacharjee, Sinjini</au><au>Wodrich, Matthew D</au><au>Corminboeuf, Clemence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2021-04-03</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>6879</spage><epage>6889</epage><pages>6879-6889</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol −1 were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information. A machine learning model for enantioselectivity prediction using reaction-based molecular representations.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34123316</pmid><doi>10.1039/d1sc00482d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6315-4398</orcidid><orcidid>https://orcid.org/0000-0002-6006-671X</orcidid><orcidid>https://orcid.org/0000-0002-7946-817X</orcidid><orcidid>https://orcid.org/0000-0002-2349-1944</orcidid><orcidid>https://orcid.org/0000-0001-5830-7425</orcidid><orcidid>https://orcid.org/0000-0001-7993-2879</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2021-04, Vol.12 (2), p.6879-6889
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmed_primary_34123316
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Asymmetry
Catalysis
Chemistry
Enantiomers
Machine learning
Molecular structure
Quantum chemistry
Representations
Screening
title Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction-based%20machine%20learning%20representations%20for%20predicting%20the%20enantioselectivity%20of%20organocatalysts&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Gallarati,%20Simone&rft.date=2021-04-03&rft.volume=12&rft.issue=2&rft.spage=6879&rft.epage=6889&rft.pages=6879-6889&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d1sc00482d&rft_dat=%3Cproquest_pubme%3E2540718724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532101383&rft_id=info:pmid/34123316&rfr_iscdi=true