Neuromorphic Context-Dependent Learning Framework With Fault-Tolerant Spike Routing

Neuromorphic computing is a promising technology that realizes computation based on event-based spiking neural networks (SNNs). However, fault-tolerant on-chip learning remains a challenge in neuromorphic systems. This study presents the first scalable neuromorphic fault-tolerant context-dependent l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-12, Vol.33 (12), p.7126-7140
Hauptverfasser: Yang, Shuangming, Wang, Jiang, Deng, Bin, Azghadi, Mostafa Rahimi, Linares-Barranco, Bernabe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7140
container_issue 12
container_start_page 7126
container_title IEEE transaction on neural networks and learning systems
container_volume 33
creator Yang, Shuangming
Wang, Jiang
Deng, Bin
Azghadi, Mostafa Rahimi
Linares-Barranco, Bernabe
description Neuromorphic computing is a promising technology that realizes computation based on event-based spiking neural networks (SNNs). However, fault-tolerant on-chip learning remains a challenge in neuromorphic systems. This study presents the first scalable neuromorphic fault-tolerant context-dependent learning (FCL) hardware framework. We show how this system can learn associations between stimulation and response in two context-dependent learning tasks from experimental neuroscience, despite possible faults in the hardware nodes. Furthermore, we demonstrate how our novel fault-tolerant neuromorphic spike routing scheme can avoid multiple fault nodes successfully and can enhance the maximum throughput of the neuromorphic network by 0.9%-16.1% in comparison with previous studies. By utilizing the real-time computational capabilities and multiple-fault-tolerant property of the proposed system, the neuronal mechanisms underlying the spiking activities of neuromorphic networks can be readily explored. In addition, the proposed system can be applied in real-time learning and decision-making applications, brain-machine integration, and the investigation of brain cognition during learning.
doi_str_mv 10.1109/TNNLS.2021.3084250
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_34115596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9452789</ieee_id><sourcerecordid>2540516672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f5598f8abc96f8831f8093368ca6d6157d5b0fd638026a3eed36231d4adfc09a3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKn-AQUJePGSut_ZHKVaFUoFW9Hbsk0mNm2SjZsE9d-7tbUH5zID88zw8iB0RvCQEBxfz6fTyWxIMSVDhhWnAh-gPiWShpQpdbifo7ceOm2aFfYlsZA8PkY9xgkRIpZ9NJtC52xpXb3Mk2Bkqxa-2vAWaqhSqNpgAsZVefUejJ0p4dO6dfCat8tgbLqiDee2AGc8NqvzNQTPtms9e4KOMlM0cLrrA_QyvpuPHsLJ0_3j6GYSJpzzNsx8ApUps0himSnFSKZwzJhUiZGpJCJKxQJnqWQKU2kYQMokZSTlJs0SHBs2QFfbv7WzHx00rS7zJoGiMBXYrtFUcCyIlBH16OU_dGU7V_l0mkacRpgRHnmKbqnE2aZxkOna5aVx35pgvbGuf63rjXW9s-6PLnavu0UJ6f7kz7EHzrdADgD7dcwFjVTMfgBmD4Wj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742703147</pqid></control><display><type>article</type><title>Neuromorphic Context-Dependent Learning Framework With Fault-Tolerant Spike Routing</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Shuangming ; Wang, Jiang ; Deng, Bin ; Azghadi, Mostafa Rahimi ; Linares-Barranco, Bernabe</creator><creatorcontrib>Yang, Shuangming ; Wang, Jiang ; Deng, Bin ; Azghadi, Mostafa Rahimi ; Linares-Barranco, Bernabe</creatorcontrib><description>Neuromorphic computing is a promising technology that realizes computation based on event-based spiking neural networks (SNNs). However, fault-tolerant on-chip learning remains a challenge in neuromorphic systems. This study presents the first scalable neuromorphic fault-tolerant context-dependent learning (FCL) hardware framework. We show how this system can learn associations between stimulation and response in two context-dependent learning tasks from experimental neuroscience, despite possible faults in the hardware nodes. Furthermore, we demonstrate how our novel fault-tolerant neuromorphic spike routing scheme can avoid multiple fault nodes successfully and can enhance the maximum throughput of the neuromorphic network by 0.9%-16.1% in comparison with previous studies. By utilizing the real-time computational capabilities and multiple-fault-tolerant property of the proposed system, the neuronal mechanisms underlying the spiking activities of neuromorphic networks can be readily explored. In addition, the proposed system can be applied in real-time learning and decision-making applications, brain-machine integration, and the investigation of brain cognition during learning.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3084250</identifier><identifier>PMID: 34115596</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain ; Brain - physiology ; Brain inspired ; Brain modeling ; Cognition ; Cognitive tasks ; Computational neuroscience ; Computers ; Context ; Context modeling ; context-dependent learning ; Decision making ; Fault tolerance ; fault tolerant ; Fault tolerant systems ; Firing pattern ; Hardware ; Learning ; Nervous system ; Neural networks ; Neural Networks, Computer ; Neuromorphic computing ; Neuromorphics ; Neurons ; Neurons - physiology ; Nodes ; Real time ; Spiking ; spiking neural network (SNN) ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2022-12, Vol.33 (12), p.7126-7140</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f5598f8abc96f8831f8093368ca6d6157d5b0fd638026a3eed36231d4adfc09a3</citedby><cites>FETCH-LOGICAL-c444t-f5598f8abc96f8831f8093368ca6d6157d5b0fd638026a3eed36231d4adfc09a3</cites><orcidid>0000-0001-7975-3985 ; 0000-0002-8044-0860 ; 0000-0002-1813-4889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9452789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9452789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34115596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Shuangming</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Deng, Bin</creatorcontrib><creatorcontrib>Azghadi, Mostafa Rahimi</creatorcontrib><creatorcontrib>Linares-Barranco, Bernabe</creatorcontrib><title>Neuromorphic Context-Dependent Learning Framework With Fault-Tolerant Spike Routing</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Neuromorphic computing is a promising technology that realizes computation based on event-based spiking neural networks (SNNs). However, fault-tolerant on-chip learning remains a challenge in neuromorphic systems. This study presents the first scalable neuromorphic fault-tolerant context-dependent learning (FCL) hardware framework. We show how this system can learn associations between stimulation and response in two context-dependent learning tasks from experimental neuroscience, despite possible faults in the hardware nodes. Furthermore, we demonstrate how our novel fault-tolerant neuromorphic spike routing scheme can avoid multiple fault nodes successfully and can enhance the maximum throughput of the neuromorphic network by 0.9%-16.1% in comparison with previous studies. By utilizing the real-time computational capabilities and multiple-fault-tolerant property of the proposed system, the neuronal mechanisms underlying the spiking activities of neuromorphic networks can be readily explored. In addition, the proposed system can be applied in real-time learning and decision-making applications, brain-machine integration, and the investigation of brain cognition during learning.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain inspired</subject><subject>Brain modeling</subject><subject>Cognition</subject><subject>Cognitive tasks</subject><subject>Computational neuroscience</subject><subject>Computers</subject><subject>Context</subject><subject>Context modeling</subject><subject>context-dependent learning</subject><subject>Decision making</subject><subject>Fault tolerance</subject><subject>fault tolerant</subject><subject>Fault tolerant systems</subject><subject>Firing pattern</subject><subject>Hardware</subject><subject>Learning</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuromorphic computing</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Nodes</subject><subject>Real time</subject><subject>Spiking</subject><subject>spiking neural network (SNN)</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbKn-AQUJePGSut_ZHKVaFUoFW9Hbsk0mNm2SjZsE9d-7tbUH5zID88zw8iB0RvCQEBxfz6fTyWxIMSVDhhWnAh-gPiWShpQpdbifo7ceOm2aFfYlsZA8PkY9xgkRIpZ9NJtC52xpXb3Mk2Bkqxa-2vAWaqhSqNpgAsZVefUejJ0p4dO6dfCat8tgbLqiDee2AGc8NqvzNQTPtms9e4KOMlM0cLrrA_QyvpuPHsLJ0_3j6GYSJpzzNsx8ApUps0himSnFSKZwzJhUiZGpJCJKxQJnqWQKU2kYQMokZSTlJs0SHBs2QFfbv7WzHx00rS7zJoGiMBXYrtFUcCyIlBH16OU_dGU7V_l0mkacRpgRHnmKbqnE2aZxkOna5aVx35pgvbGuf63rjXW9s-6PLnavu0UJ6f7kz7EHzrdADgD7dcwFjVTMfgBmD4Wj</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Yang, Shuangming</creator><creator>Wang, Jiang</creator><creator>Deng, Bin</creator><creator>Azghadi, Mostafa Rahimi</creator><creator>Linares-Barranco, Bernabe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7975-3985</orcidid><orcidid>https://orcid.org/0000-0002-8044-0860</orcidid><orcidid>https://orcid.org/0000-0002-1813-4889</orcidid></search><sort><creationdate>20221201</creationdate><title>Neuromorphic Context-Dependent Learning Framework With Fault-Tolerant Spike Routing</title><author>Yang, Shuangming ; Wang, Jiang ; Deng, Bin ; Azghadi, Mostafa Rahimi ; Linares-Barranco, Bernabe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f5598f8abc96f8831f8093368ca6d6157d5b0fd638026a3eed36231d4adfc09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain inspired</topic><topic>Brain modeling</topic><topic>Cognition</topic><topic>Cognitive tasks</topic><topic>Computational neuroscience</topic><topic>Computers</topic><topic>Context</topic><topic>Context modeling</topic><topic>context-dependent learning</topic><topic>Decision making</topic><topic>Fault tolerance</topic><topic>fault tolerant</topic><topic>Fault tolerant systems</topic><topic>Firing pattern</topic><topic>Hardware</topic><topic>Learning</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuromorphic computing</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Nodes</topic><topic>Real time</topic><topic>Spiking</topic><topic>spiking neural network (SNN)</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shuangming</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Deng, Bin</creatorcontrib><creatorcontrib>Azghadi, Mostafa Rahimi</creatorcontrib><creatorcontrib>Linares-Barranco, Bernabe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Shuangming</au><au>Wang, Jiang</au><au>Deng, Bin</au><au>Azghadi, Mostafa Rahimi</au><au>Linares-Barranco, Bernabe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromorphic Context-Dependent Learning Framework With Fault-Tolerant Spike Routing</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>33</volume><issue>12</issue><spage>7126</spage><epage>7140</epage><pages>7126-7140</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Neuromorphic computing is a promising technology that realizes computation based on event-based spiking neural networks (SNNs). However, fault-tolerant on-chip learning remains a challenge in neuromorphic systems. This study presents the first scalable neuromorphic fault-tolerant context-dependent learning (FCL) hardware framework. We show how this system can learn associations between stimulation and response in two context-dependent learning tasks from experimental neuroscience, despite possible faults in the hardware nodes. Furthermore, we demonstrate how our novel fault-tolerant neuromorphic spike routing scheme can avoid multiple fault nodes successfully and can enhance the maximum throughput of the neuromorphic network by 0.9%-16.1% in comparison with previous studies. By utilizing the real-time computational capabilities and multiple-fault-tolerant property of the proposed system, the neuronal mechanisms underlying the spiking activities of neuromorphic networks can be readily explored. In addition, the proposed system can be applied in real-time learning and decision-making applications, brain-machine integration, and the investigation of brain cognition during learning.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34115596</pmid><doi>10.1109/TNNLS.2021.3084250</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7975-3985</orcidid><orcidid>https://orcid.org/0000-0002-8044-0860</orcidid><orcidid>https://orcid.org/0000-0002-1813-4889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2022-12, Vol.33 (12), p.7126-7140
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_34115596
source IEEE Electronic Library (IEL)
subjects Algorithms
Brain
Brain - physiology
Brain inspired
Brain modeling
Cognition
Cognitive tasks
Computational neuroscience
Computers
Context
Context modeling
context-dependent learning
Decision making
Fault tolerance
fault tolerant
Fault tolerant systems
Firing pattern
Hardware
Learning
Nervous system
Neural networks
Neural Networks, Computer
Neuromorphic computing
Neuromorphics
Neurons
Neurons - physiology
Nodes
Real time
Spiking
spiking neural network (SNN)
Task analysis
title Neuromorphic Context-Dependent Learning Framework With Fault-Tolerant Spike Routing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T18%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromorphic%20Context-Dependent%20Learning%20Framework%20With%20Fault-Tolerant%20Spike%20Routing&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Yang,%20Shuangming&rft.date=2022-12-01&rft.volume=33&rft.issue=12&rft.spage=7126&rft.epage=7140&rft.pages=7126-7140&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3084250&rft_dat=%3Cproquest_RIE%3E2540516672%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742703147&rft_id=info:pmid/34115596&rft_ieee_id=9452789&rfr_iscdi=true