Clinical characterization of respiratory large droplet production during common airway procedures using high-speed imaging
During the COVID-19 pandemic, a significant number of healthcare workers have been infected with SARS-CoV-2. However, there remains little knowledge regarding large droplet dissemination during airway management procedures in real life settings. 12 different airway management procedures were investi...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-05, Vol.11 (1), p.10627-10627, Article 10627 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10627 |
---|---|
container_issue | 1 |
container_start_page | 10627 |
container_title | Scientific reports |
container_volume | 11 |
creator | Mueller, S. K. Veltrup, R. Jakubaß, B. Kniesburges, S. Huebner, M. J. Kempfle, J. S. Dittrich, S. Iro, H. Döllinger, M. |
description | During the COVID-19 pandemic, a significant number of healthcare workers have been infected with SARS-CoV-2. However, there remains little knowledge regarding large droplet dissemination during airway management procedures in real life settings. 12 different airway management procedures were investigated during routine clinical care. A high-speed video camera (1000 frames/second) was for imaging. Quantitative droplet characteristics as size, distance traveled, and velocity were computed. Droplets were detected in 8/12 procedures. The droplet trajectories could be divided into two distinctive patterns (type 1/2). Type 1 represented a ballistic trajectory with higher speed large droplets whereas type 2 represented a random trajectory of slower particles that persisted longer in air. The use of tracheal cannula filters reduced the amount of droplets. Respiratory droplet patterns generated during airway management procedures follow two distinctive trajectories based on the influence of aerodynamic forces. Speaking and coughing produce more droplets than non-invasive ventilation therapy confirming these behaviors as exposure risks. Even large droplets may exhibit patterns resembling the fluid dynamics smaller airborne aerosols that follow the airflow convectively and may place the healthcare provider at risk. |
doi_str_mv | 10.1038/s41598-021-89760-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34017030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f69c223dff04b3c9c9e3512695e21ac</doaj_id><sourcerecordid>2529597208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-92506250d8a77abce2594d530dcf185609ba2510f1d98165206e12af5ff64cf53</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jLuH_BCCt4IUk1Omra5EWTwY2HBG70OmeSkk6HT1KR1mP31m07XcdcLsdCvnOe8zSlPlr2k5B0lrHkfS8pFUxCgRSPqihSHJ9klkJIXwACePni-yK5i3JF0cBAlFc-zC1YSWhNGLrPbded6p1WX660KSo8Y3K0ane9zb_OAcXBBjT4c806FFnMT_NDhmA_Bm0mfODMF17e59vt9elMuHNRxrmtMFYz5FOfy1rXbIg6IJnd71aalF9kzq7qIV_f3Vfbj86fv66_Fzbcv1-uPN4XmJRkLAZxU6TSNqmu10QhclIYzYrSlDa-I2CjglFhqREMrDqRCCspya6tSW85W2fWSa7zaySGkz4ej9MrJ04IPrVRhdLpDyWwlNAAz1pJyw7TQAhmnUAmOQJVOWR-WrGHa7NFo7Megukehjyu928rW_5INZXWTLqvszX1A8D8njKPcu6ix61SPfooSOKMAvC6rhL7-C935KfTpVyUKBBc1kCZRsFA6-BgD2vNmKJGzKXIxRSZT5MkUeUhNrx6OcW757UUC3i7AATfeRu2w13jGkkoVrzlAPVs1D9X8P71248mvtZ_6MbWypTUOs0UY_gz5j_3fAV2p7Ow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529597208</pqid></control><display><type>article</type><title>Clinical characterization of respiratory large droplet production during common airway procedures using high-speed imaging</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Mueller, S. K. ; Veltrup, R. ; Jakubaß, B. ; Kniesburges, S. ; Huebner, M. J. ; Kempfle, J. S. ; Dittrich, S. ; Iro, H. ; Döllinger, M.</creator><creatorcontrib>Mueller, S. K. ; Veltrup, R. ; Jakubaß, B. ; Kniesburges, S. ; Huebner, M. J. ; Kempfle, J. S. ; Dittrich, S. ; Iro, H. ; Döllinger, M.</creatorcontrib><description>During the COVID-19 pandemic, a significant number of healthcare workers have been infected with SARS-CoV-2. However, there remains little knowledge regarding large droplet dissemination during airway management procedures in real life settings. 12 different airway management procedures were investigated during routine clinical care. A high-speed video camera (1000 frames/second) was for imaging. Quantitative droplet characteristics as size, distance traveled, and velocity were computed. Droplets were detected in 8/12 procedures. The droplet trajectories could be divided into two distinctive patterns (type 1/2). Type 1 represented a ballistic trajectory with higher speed large droplets whereas type 2 represented a random trajectory of slower particles that persisted longer in air. The use of tracheal cannula filters reduced the amount of droplets. Respiratory droplet patterns generated during airway management procedures follow two distinctive trajectories based on the influence of aerodynamic forces. Speaking and coughing produce more droplets than non-invasive ventilation therapy confirming these behaviors as exposure risks. Even large droplets may exhibit patterns resembling the fluid dynamics smaller airborne aerosols that follow the airflow convectively and may place the healthcare provider at risk.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-89760-w</identifier><identifier>PMID: 34017030</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 692/700/459 ; Aerosols - analysis ; Air Microbiology ; Airway management ; Cough ; COVID-19 ; COVID-19 - transmission ; Fluid dynamics ; Health care ; Humanities and Social Sciences ; Humans ; Hydrodynamics ; Mechanical ventilation ; Medical personnel ; multidisciplinary ; Multidisciplinary Sciences ; Pandemics ; Respiration ; Respiratory System ; Respiratory tract ; Risk taking ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Severe acute respiratory syndrome coronavirus 2</subject><ispartof>Scientific reports, 2021-05, Vol.11 (1), p.10627-10627, Article 10627</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000657522700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-92506250d8a77abce2594d530dcf185609ba2510f1d98165206e12af5ff64cf53</citedby><cites>FETCH-LOGICAL-c540t-92506250d8a77abce2594d530dcf185609ba2510f1d98165206e12af5ff64cf53</cites><orcidid>0000-0003-2717-4820 ; 0000-0001-5790-0841 ; 0000-0002-1233-8901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137881/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137881/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,39267,41129,42198,51585,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34017030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mueller, S. K.</creatorcontrib><creatorcontrib>Veltrup, R.</creatorcontrib><creatorcontrib>Jakubaß, B.</creatorcontrib><creatorcontrib>Kniesburges, S.</creatorcontrib><creatorcontrib>Huebner, M. J.</creatorcontrib><creatorcontrib>Kempfle, J. S.</creatorcontrib><creatorcontrib>Dittrich, S.</creatorcontrib><creatorcontrib>Iro, H.</creatorcontrib><creatorcontrib>Döllinger, M.</creatorcontrib><title>Clinical characterization of respiratory large droplet production during common airway procedures using high-speed imaging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>During the COVID-19 pandemic, a significant number of healthcare workers have been infected with SARS-CoV-2. However, there remains little knowledge regarding large droplet dissemination during airway management procedures in real life settings. 12 different airway management procedures were investigated during routine clinical care. A high-speed video camera (1000 frames/second) was for imaging. Quantitative droplet characteristics as size, distance traveled, and velocity were computed. Droplets were detected in 8/12 procedures. The droplet trajectories could be divided into two distinctive patterns (type 1/2). Type 1 represented a ballistic trajectory with higher speed large droplets whereas type 2 represented a random trajectory of slower particles that persisted longer in air. The use of tracheal cannula filters reduced the amount of droplets. Respiratory droplet patterns generated during airway management procedures follow two distinctive trajectories based on the influence of aerodynamic forces. Speaking and coughing produce more droplets than non-invasive ventilation therapy confirming these behaviors as exposure risks. Even large droplets may exhibit patterns resembling the fluid dynamics smaller airborne aerosols that follow the airflow convectively and may place the healthcare provider at risk.</description><subject>639/166/988</subject><subject>692/700/459</subject><subject>Aerosols - analysis</subject><subject>Air Microbiology</subject><subject>Airway management</subject><subject>Cough</subject><subject>COVID-19</subject><subject>COVID-19 - transmission</subject><subject>Fluid dynamics</subject><subject>Health care</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Mechanical ventilation</subject><subject>Medical personnel</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Pandemics</subject><subject>Respiration</subject><subject>Respiratory System</subject><subject>Respiratory tract</subject><subject>Risk taking</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jLuH_BCCt4IUk1Omra5EWTwY2HBG70OmeSkk6HT1KR1mP31m07XcdcLsdCvnOe8zSlPlr2k5B0lrHkfS8pFUxCgRSPqihSHJ9klkJIXwACePni-yK5i3JF0cBAlFc-zC1YSWhNGLrPbded6p1WX660KSo8Y3K0ane9zb_OAcXBBjT4c806FFnMT_NDhmA_Bm0mfODMF17e59vt9elMuHNRxrmtMFYz5FOfy1rXbIg6IJnd71aalF9kzq7qIV_f3Vfbj86fv66_Fzbcv1-uPN4XmJRkLAZxU6TSNqmu10QhclIYzYrSlDa-I2CjglFhqREMrDqRCCspya6tSW85W2fWSa7zaySGkz4ej9MrJ04IPrVRhdLpDyWwlNAAz1pJyw7TQAhmnUAmOQJVOWR-WrGHa7NFo7Megukehjyu928rW_5INZXWTLqvszX1A8D8njKPcu6ix61SPfooSOKMAvC6rhL7-C935KfTpVyUKBBc1kCZRsFA6-BgD2vNmKJGzKXIxRSZT5MkUeUhNrx6OcW757UUC3i7AATfeRu2w13jGkkoVrzlAPVs1D9X8P71248mvtZ_6MbWypTUOs0UY_gz5j_3fAV2p7Ow</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Mueller, S. K.</creator><creator>Veltrup, R.</creator><creator>Jakubaß, B.</creator><creator>Kniesburges, S.</creator><creator>Huebner, M. J.</creator><creator>Kempfle, J. S.</creator><creator>Dittrich, S.</creator><creator>Iro, H.</creator><creator>Döllinger, M.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2717-4820</orcidid><orcidid>https://orcid.org/0000-0001-5790-0841</orcidid><orcidid>https://orcid.org/0000-0002-1233-8901</orcidid></search><sort><creationdate>20210520</creationdate><title>Clinical characterization of respiratory large droplet production during common airway procedures using high-speed imaging</title><author>Mueller, S. K. ; Veltrup, R. ; Jakubaß, B. ; Kniesburges, S. ; Huebner, M. J. ; Kempfle, J. S. ; Dittrich, S. ; Iro, H. ; Döllinger, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-92506250d8a77abce2594d530dcf185609ba2510f1d98165206e12af5ff64cf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/988</topic><topic>692/700/459</topic><topic>Aerosols - analysis</topic><topic>Air Microbiology</topic><topic>Airway management</topic><topic>Cough</topic><topic>COVID-19</topic><topic>COVID-19 - transmission</topic><topic>Fluid dynamics</topic><topic>Health care</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Mechanical ventilation</topic><topic>Medical personnel</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Pandemics</topic><topic>Respiration</topic><topic>Respiratory System</topic><topic>Respiratory tract</topic><topic>Risk taking</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, S. K.</creatorcontrib><creatorcontrib>Veltrup, R.</creatorcontrib><creatorcontrib>Jakubaß, B.</creatorcontrib><creatorcontrib>Kniesburges, S.</creatorcontrib><creatorcontrib>Huebner, M. J.</creatorcontrib><creatorcontrib>Kempfle, J. S.</creatorcontrib><creatorcontrib>Dittrich, S.</creatorcontrib><creatorcontrib>Iro, H.</creatorcontrib><creatorcontrib>Döllinger, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, S. K.</au><au>Veltrup, R.</au><au>Jakubaß, B.</au><au>Kniesburges, S.</au><au>Huebner, M. J.</au><au>Kempfle, J. S.</au><au>Dittrich, S.</au><au>Iro, H.</au><au>Döllinger, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical characterization of respiratory large droplet production during common airway procedures using high-speed imaging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>10627</spage><epage>10627</epage><pages>10627-10627</pages><artnum>10627</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>During the COVID-19 pandemic, a significant number of healthcare workers have been infected with SARS-CoV-2. However, there remains little knowledge regarding large droplet dissemination during airway management procedures in real life settings. 12 different airway management procedures were investigated during routine clinical care. A high-speed video camera (1000 frames/second) was for imaging. Quantitative droplet characteristics as size, distance traveled, and velocity were computed. Droplets were detected in 8/12 procedures. The droplet trajectories could be divided into two distinctive patterns (type 1/2). Type 1 represented a ballistic trajectory with higher speed large droplets whereas type 2 represented a random trajectory of slower particles that persisted longer in air. The use of tracheal cannula filters reduced the amount of droplets. Respiratory droplet patterns generated during airway management procedures follow two distinctive trajectories based on the influence of aerodynamic forces. Speaking and coughing produce more droplets than non-invasive ventilation therapy confirming these behaviors as exposure risks. Even large droplets may exhibit patterns resembling the fluid dynamics smaller airborne aerosols that follow the airflow convectively and may place the healthcare provider at risk.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34017030</pmid><doi>10.1038/s41598-021-89760-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2717-4820</orcidid><orcidid>https://orcid.org/0000-0001-5790-0841</orcidid><orcidid>https://orcid.org/0000-0002-1233-8901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-05, Vol.11 (1), p.10627-10627, Article 10627 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmed_primary_34017030 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/166/988 692/700/459 Aerosols - analysis Air Microbiology Airway management Cough COVID-19 COVID-19 - transmission Fluid dynamics Health care Humanities and Social Sciences Humans Hydrodynamics Mechanical ventilation Medical personnel multidisciplinary Multidisciplinary Sciences Pandemics Respiration Respiratory System Respiratory tract Risk taking Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 |
title | Clinical characterization of respiratory large droplet production during common airway procedures using high-speed imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T11%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20characterization%20of%20respiratory%20large%20droplet%20production%20during%20common%20airway%20procedures%20using%20high-speed%20imaging&rft.jtitle=Scientific%20reports&rft.au=Mueller,%20S.%20K.&rft.date=2021-05-20&rft.volume=11&rft.issue=1&rft.spage=10627&rft.epage=10627&rft.pages=10627-10627&rft.artnum=10627&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-89760-w&rft_dat=%3Cproquest_pubme%3E2529597208%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529597208&rft_id=info:pmid/34017030&rft_doaj_id=oai_doaj_org_article_3f69c223dff04b3c9c9e3512695e21ac&rfr_iscdi=true |