Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model
The mechanistic neuropharmacokinetic (neuroPK) model was established to predict unbound brain-to-plasma partitioning ( K p,uu,brain ) by considering in vitro efflux activities of multiple drug resistance 1 (MDR1) and breast cancer resistance protein (BCRP). Herein, we directly compare this model to...
Gespeichert in:
Veröffentlicht in: | The AAPS journal 2021-05, Vol.23 (4), p.72-72, Article 72 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 4 |
container_start_page | 72 |
container_title | The AAPS journal |
container_volume | 23 |
creator | Kosugi, Yohei Mizuno, Kunihiko Santos, Cipriano Sato, Sho Hosea, Natalie Zientek, Michael |
description | The mechanistic neuropharmacokinetic (neuroPK) model was established to predict unbound brain-to-plasma partitioning (
K
p,uu,brain
) by considering
in vitro
efflux activities of multiple drug resistance 1 (MDR1) and breast cancer resistance protein (BCRP). Herein, we directly compare this model to a computational machine learning approach utilizing physicochemical descriptors and efflux ratios of MDR1 and BCRP-expressing cells for predicting
K
p,uu,brain
in rats. Two different types of machine learning techniques, Gaussian processes (GP) and random forest regression (RF), were assessed by the time and cluster-split validation methods using 640 internal compounds. The predictivity of machine learning models based on only molecular descriptors in the time-split dataset performed worse than the cluster-split dataset, whereas the models incorporating MDR1 and BCRP efflux ratios showed similar predictivity between time and cluster-split datasets. The GP incorporating MDR1 and BCRP in the time-split dataset achieved the highest correlation (
R
2
= 0.602). These results suggested that incorporation of MDR1 and BCRP in machine learning is beneficial for robust and accurate prediction.
K
p,uu,brain
prediction utilizing the neuroPK model was significantly worse compared to machine learning approaches for the same dataset. We also investigated the predictivity of
K
p,uu,brain
using an external independent test set of 34 marketed drugs. Compared to machine learning models, the neuroPK model showed better predictive performance with
R
2
of 0.577. This work demonstrates that the machine learning model for
K
p,uu,brain
achieves maximum predictive performance within the chemical applicability domain, whereas the neuroPK model is applicable more widely beyond the chemical space covered in the training dataset. |
doi_str_mv | 10.1208/s12248-021-00604-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34008121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528920641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-74f63baefa64307b39803e6162faa9657e6fcba442fcd862450c3498fb7f1a103</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtRCIlsIPsEBesgn4FU9mg1QGCkgzMAtmbd049sQlsYPtoNKP4VvxdEopG1a-Oq9r-yD0nJJXlJHmdaKMiaYijFaESCKqqwfolNY1qRaCyof35hP0JKVLQjjjlD5GJ1wQ0lBGT9Gvdy4anfEqjBNEl4LHweLcG7yNpnM6u7_Izrdh9h1-G8H5KodqO0AaAW8hZncQOr_Hu-wGd32YNqB75w1eG4g31Pk0xVBADCVkY3QP3qXsNP5s5himHuIIOnwrngO4CZ0ZnqJHFoZknt2eZ2h38f7r6mO1_vLh0-p8XWkhZC5vtJK3YCxIwcmi5cuGcCOpZBZgKeuFkVa3IASzumskEzXRXCwb2y4sBUr4GXpzzJ3mdjSdNj5HGNQU3Qjxpwrg1L-Md73ahx-qoZyyZlkCXt4GxPB9Nimr0SVthgG8CXNSrC4qRqSgRcqOUh1DStHYuzWUqEOx6lisKsWqm2LVVTG9uH_BO8ufJouAHwWpUH5voroMc_Tl0_4X-xsJELNs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528920641</pqid></control><display><type>article</type><title>Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kosugi, Yohei ; Mizuno, Kunihiko ; Santos, Cipriano ; Sato, Sho ; Hosea, Natalie ; Zientek, Michael</creator><creatorcontrib>Kosugi, Yohei ; Mizuno, Kunihiko ; Santos, Cipriano ; Sato, Sho ; Hosea, Natalie ; Zientek, Michael</creatorcontrib><description>The mechanistic neuropharmacokinetic (neuroPK) model was established to predict unbound brain-to-plasma partitioning (
K
p,uu,brain
) by considering
in vitro
efflux activities of multiple drug resistance 1 (MDR1) and breast cancer resistance protein (BCRP). Herein, we directly compare this model to a computational machine learning approach utilizing physicochemical descriptors and efflux ratios of MDR1 and BCRP-expressing cells for predicting
K
p,uu,brain
in rats. Two different types of machine learning techniques, Gaussian processes (GP) and random forest regression (RF), were assessed by the time and cluster-split validation methods using 640 internal compounds. The predictivity of machine learning models based on only molecular descriptors in the time-split dataset performed worse than the cluster-split dataset, whereas the models incorporating MDR1 and BCRP efflux ratios showed similar predictivity between time and cluster-split datasets. The GP incorporating MDR1 and BCRP in the time-split dataset achieved the highest correlation (
R
2
= 0.602). These results suggested that incorporation of MDR1 and BCRP in machine learning is beneficial for robust and accurate prediction.
K
p,uu,brain
prediction utilizing the neuroPK model was significantly worse compared to machine learning approaches for the same dataset. We also investigated the predictivity of
K
p,uu,brain
using an external independent test set of 34 marketed drugs. Compared to machine learning models, the neuroPK model showed better predictive performance with
R
2
of 0.577. This work demonstrates that the machine learning model for
K
p,uu,brain
achieves maximum predictive performance within the chemical applicability domain, whereas the neuroPK model is applicable more widely beyond the chemical space covered in the training dataset.</description><identifier>ISSN: 1550-7416</identifier><identifier>EISSN: 1550-7416</identifier><identifier>DOI: 10.1208/s12248-021-00604-x</identifier><identifier>PMID: 34008121</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; ATP Binding Cassette Transporter, Subfamily B - metabolism ; ATP Binding Cassette Transporter, Subfamily G, Member 2 - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Blood-Brain Barrier - metabolism ; Datasets as Topic ; Dogs ; Machine Learning ; Madin Darby Canine Kidney Cells ; Male ; Models, Animal ; Models, Biological ; Pharmacology/Toxicology ; Pharmacy ; Predictive Value of Tests ; Rats ; Research Article</subject><ispartof>The AAPS journal, 2021-05, Vol.23 (4), p.72-72, Article 72</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-74f63baefa64307b39803e6162faa9657e6fcba442fcd862450c3498fb7f1a103</citedby><cites>FETCH-LOGICAL-c446t-74f63baefa64307b39803e6162faa9657e6fcba442fcd862450c3498fb7f1a103</cites><orcidid>0000-0001-9318-4723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1208/s12248-021-00604-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1208/s12248-021-00604-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34008121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosugi, Yohei</creatorcontrib><creatorcontrib>Mizuno, Kunihiko</creatorcontrib><creatorcontrib>Santos, Cipriano</creatorcontrib><creatorcontrib>Sato, Sho</creatorcontrib><creatorcontrib>Hosea, Natalie</creatorcontrib><creatorcontrib>Zientek, Michael</creatorcontrib><title>Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model</title><title>The AAPS journal</title><addtitle>AAPS J</addtitle><addtitle>AAPS J</addtitle><description>The mechanistic neuropharmacokinetic (neuroPK) model was established to predict unbound brain-to-plasma partitioning (
K
p,uu,brain
) by considering
in vitro
efflux activities of multiple drug resistance 1 (MDR1) and breast cancer resistance protein (BCRP). Herein, we directly compare this model to a computational machine learning approach utilizing physicochemical descriptors and efflux ratios of MDR1 and BCRP-expressing cells for predicting
K
p,uu,brain
in rats. Two different types of machine learning techniques, Gaussian processes (GP) and random forest regression (RF), were assessed by the time and cluster-split validation methods using 640 internal compounds. The predictivity of machine learning models based on only molecular descriptors in the time-split dataset performed worse than the cluster-split dataset, whereas the models incorporating MDR1 and BCRP efflux ratios showed similar predictivity between time and cluster-split datasets. The GP incorporating MDR1 and BCRP in the time-split dataset achieved the highest correlation (
R
2
= 0.602). These results suggested that incorporation of MDR1 and BCRP in machine learning is beneficial for robust and accurate prediction.
K
p,uu,brain
prediction utilizing the neuroPK model was significantly worse compared to machine learning approaches for the same dataset. We also investigated the predictivity of
K
p,uu,brain
using an external independent test set of 34 marketed drugs. Compared to machine learning models, the neuroPK model showed better predictive performance with
R
2
of 0.577. This work demonstrates that the machine learning model for
K
p,uu,brain
achieves maximum predictive performance within the chemical applicability domain, whereas the neuroPK model is applicable more widely beyond the chemical space covered in the training dataset.</description><subject>Animals</subject><subject>ATP Binding Cassette Transporter, Subfamily B - metabolism</subject><subject>ATP Binding Cassette Transporter, Subfamily G, Member 2 - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Datasets as Topic</subject><subject>Dogs</subject><subject>Machine Learning</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Male</subject><subject>Models, Animal</subject><subject>Models, Biological</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Predictive Value of Tests</subject><subject>Rats</subject><subject>Research Article</subject><issn>1550-7416</issn><issn>1550-7416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9Uctu1DAUtRCIlsIPsEBesgn4FU9mg1QGCkgzMAtmbd049sQlsYPtoNKP4VvxdEopG1a-Oq9r-yD0nJJXlJHmdaKMiaYijFaESCKqqwfolNY1qRaCyof35hP0JKVLQjjjlD5GJ1wQ0lBGT9Gvdy4anfEqjBNEl4LHweLcG7yNpnM6u7_Izrdh9h1-G8H5KodqO0AaAW8hZncQOr_Hu-wGd32YNqB75w1eG4g31Pk0xVBADCVkY3QP3qXsNP5s5himHuIIOnwrngO4CZ0ZnqJHFoZknt2eZ2h38f7r6mO1_vLh0-p8XWkhZC5vtJK3YCxIwcmi5cuGcCOpZBZgKeuFkVa3IASzumskEzXRXCwb2y4sBUr4GXpzzJ3mdjSdNj5HGNQU3Qjxpwrg1L-Md73ahx-qoZyyZlkCXt4GxPB9Nimr0SVthgG8CXNSrC4qRqSgRcqOUh1DStHYuzWUqEOx6lisKsWqm2LVVTG9uH_BO8ufJouAHwWpUH5voroMc_Tl0_4X-xsJELNs</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Kosugi, Yohei</creator><creator>Mizuno, Kunihiko</creator><creator>Santos, Cipriano</creator><creator>Sato, Sho</creator><creator>Hosea, Natalie</creator><creator>Zientek, Michael</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9318-4723</orcidid></search><sort><creationdate>20210518</creationdate><title>Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model</title><author>Kosugi, Yohei ; Mizuno, Kunihiko ; Santos, Cipriano ; Sato, Sho ; Hosea, Natalie ; Zientek, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-74f63baefa64307b39803e6162faa9657e6fcba442fcd862450c3498fb7f1a103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>ATP Binding Cassette Transporter, Subfamily B - metabolism</topic><topic>ATP Binding Cassette Transporter, Subfamily G, Member 2 - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Datasets as Topic</topic><topic>Dogs</topic><topic>Machine Learning</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Male</topic><topic>Models, Animal</topic><topic>Models, Biological</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Predictive Value of Tests</topic><topic>Rats</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosugi, Yohei</creatorcontrib><creatorcontrib>Mizuno, Kunihiko</creatorcontrib><creatorcontrib>Santos, Cipriano</creatorcontrib><creatorcontrib>Sato, Sho</creatorcontrib><creatorcontrib>Hosea, Natalie</creatorcontrib><creatorcontrib>Zientek, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The AAPS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosugi, Yohei</au><au>Mizuno, Kunihiko</au><au>Santos, Cipriano</au><au>Sato, Sho</au><au>Hosea, Natalie</au><au>Zientek, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model</atitle><jtitle>The AAPS journal</jtitle><stitle>AAPS J</stitle><addtitle>AAPS J</addtitle><date>2021-05-18</date><risdate>2021</risdate><volume>23</volume><issue>4</issue><spage>72</spage><epage>72</epage><pages>72-72</pages><artnum>72</artnum><issn>1550-7416</issn><eissn>1550-7416</eissn><abstract>The mechanistic neuropharmacokinetic (neuroPK) model was established to predict unbound brain-to-plasma partitioning (
K
p,uu,brain
) by considering
in vitro
efflux activities of multiple drug resistance 1 (MDR1) and breast cancer resistance protein (BCRP). Herein, we directly compare this model to a computational machine learning approach utilizing physicochemical descriptors and efflux ratios of MDR1 and BCRP-expressing cells for predicting
K
p,uu,brain
in rats. Two different types of machine learning techniques, Gaussian processes (GP) and random forest regression (RF), were assessed by the time and cluster-split validation methods using 640 internal compounds. The predictivity of machine learning models based on only molecular descriptors in the time-split dataset performed worse than the cluster-split dataset, whereas the models incorporating MDR1 and BCRP efflux ratios showed similar predictivity between time and cluster-split datasets. The GP incorporating MDR1 and BCRP in the time-split dataset achieved the highest correlation (
R
2
= 0.602). These results suggested that incorporation of MDR1 and BCRP in machine learning is beneficial for robust and accurate prediction.
K
p,uu,brain
prediction utilizing the neuroPK model was significantly worse compared to machine learning approaches for the same dataset. We also investigated the predictivity of
K
p,uu,brain
using an external independent test set of 34 marketed drugs. Compared to machine learning models, the neuroPK model showed better predictive performance with
R
2
of 0.577. This work demonstrates that the machine learning model for
K
p,uu,brain
achieves maximum predictive performance within the chemical applicability domain, whereas the neuroPK model is applicable more widely beyond the chemical space covered in the training dataset.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34008121</pmid><doi>10.1208/s12248-021-00604-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9318-4723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-7416 |
ispartof | The AAPS journal, 2021-05, Vol.23 (4), p.72-72, Article 72 |
issn | 1550-7416 1550-7416 |
language | eng |
recordid | cdi_pubmed_primary_34008121 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals ATP Binding Cassette Transporter, Subfamily B - metabolism ATP Binding Cassette Transporter, Subfamily G, Member 2 - metabolism Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Blood-Brain Barrier - metabolism Datasets as Topic Dogs Machine Learning Madin Darby Canine Kidney Cells Male Models, Animal Models, Biological Pharmacology/Toxicology Pharmacy Predictive Value of Tests Rats Research Article |
title | Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Comparison%20of%20the%20Prediction%20of%20the%20Unbound%20Brain-to-Plasma%20Partitioning%20Utilizing%20Machine%20Learning%20Approach%20and%20Mechanistic%20Neuropharmacokinetic%20Model&rft.jtitle=The%20AAPS%20journal&rft.au=Kosugi,%20Yohei&rft.date=2021-05-18&rft.volume=23&rft.issue=4&rft.spage=72&rft.epage=72&rft.pages=72-72&rft.artnum=72&rft.issn=1550-7416&rft.eissn=1550-7416&rft_id=info:doi/10.1208/s12248-021-00604-x&rft_dat=%3Cproquest_pubme%3E2528920641%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528920641&rft_id=info:pmid/34008121&rfr_iscdi=true |