Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations
Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibit...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2021-04, Vol.12 (15), p.5511-5516 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5516 |
---|---|
container_issue | 15 |
container_start_page | 5511 |
container_title | Chemical science (Cambridge) |
container_volume | 12 |
creator | Voice, Angus T Tresadern, Gary Twidale, Rebecca M van Vlijmen, Herman Mulholland, Adrian J |
description | Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (Δ
G
‡
= 10.5 kcal mol
−1
) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets.
QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds
via
an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto-enol tautomerisation. |
doi_str_mv | 10.1039/d0sc06122k |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33995994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528433071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6e69f62a8fbe97355194986ae60dd1da1639a35ebb18ee6e8980bc7ece2215bf3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhi1URKvSS-8gSz2AkNL6Y-21L0gQPkUjVBXOlu2dbd1u7GLvRsq_xyFtoPgyI8_jVzN-B6FjSk4p4fqsI8UTSRm7fYIOGGnoTAqu93Y5I_voqJQbUg_nVLD2GdrnXGuhdXOAYAH-2sZQljj12KeVHSCO2IXYhXi1uQsuT2OIweEx4fc1T_FVweM6pxIi4NsQbQGcYQX1aYfdGl8szhYL7O3gp8GOIcXyHD3t7VDg6D4eop-fPv6Yf5mdf__8df7ufOYbpsaZBKl7yazqHeiWC0F1o5W0IEnX0c5SybXlApyjCkCC0oo434IHxqhwPT9Eb7e6d5NbQufrKNkO5i6Hpc1rk2wwjysxXJurtDKK6LZlsgq8vhfI6dcEZTTLUDwMg42QpmKYYKrhnLS0oif_oTdpyrGOVykqWikV2Qi-2VK-_lfJ0O-aocRsDDQfyOX8j4HfKvzy3_Z36INdFXixBXLxu-rfDeC_Ael8oPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515766806</pqid></control><display><type>article</type><title>Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Voice, Angus T ; Tresadern, Gary ; Twidale, Rebecca M ; van Vlijmen, Herman ; Mulholland, Adrian J</creator><creatorcontrib>Voice, Angus T ; Tresadern, Gary ; Twidale, Rebecca M ; van Vlijmen, Herman ; Mulholland, Adrian J</creatorcontrib><description>Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (Δ
G
‡
= 10.5 kcal mol
−1
) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets.
QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds
via
an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto-enol tautomerisation.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc06122k</identifier><identifier>PMID: 33995994</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acrylamide ; Bonding ; Chemistry ; Covalence ; Covalent bonds ; Deactivation ; Kinases ; Molecular dynamics ; Quantum mechanics ; Tyrosine</subject><ispartof>Chemical science (Cambridge), 2021-04, Vol.12 (15), p.5511-5516</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6e69f62a8fbe97355194986ae60dd1da1639a35ebb18ee6e8980bc7ece2215bf3</citedby><cites>FETCH-LOGICAL-c428t-6e69f62a8fbe97355194986ae60dd1da1639a35ebb18ee6e8980bc7ece2215bf3</cites><orcidid>0000-0003-1015-4567 ; 0000-0002-4801-1644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097726/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097726/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33995994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voice, Angus T</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>Twidale, Rebecca M</creatorcontrib><creatorcontrib>van Vlijmen, Herman</creatorcontrib><creatorcontrib>Mulholland, Adrian J</creatorcontrib><title>Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (Δ
G
‡
= 10.5 kcal mol
−1
) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets.
QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds
via
an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto-enol tautomerisation.</description><subject>Acrylamide</subject><subject>Bonding</subject><subject>Chemistry</subject><subject>Covalence</subject><subject>Covalent bonds</subject><subject>Deactivation</subject><subject>Kinases</subject><subject>Molecular dynamics</subject><subject>Quantum mechanics</subject><subject>Tyrosine</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkk1vEzEQhi1URKvSS-8gSz2AkNL6Y-21L0gQPkUjVBXOlu2dbd1u7GLvRsq_xyFtoPgyI8_jVzN-B6FjSk4p4fqsI8UTSRm7fYIOGGnoTAqu93Y5I_voqJQbUg_nVLD2GdrnXGuhdXOAYAH-2sZQljj12KeVHSCO2IXYhXi1uQsuT2OIweEx4fc1T_FVweM6pxIi4NsQbQGcYQX1aYfdGl8szhYL7O3gp8GOIcXyHD3t7VDg6D4eop-fPv6Yf5mdf__8df7ufOYbpsaZBKl7yazqHeiWC0F1o5W0IEnX0c5SybXlApyjCkCC0oo434IHxqhwPT9Eb7e6d5NbQufrKNkO5i6Hpc1rk2wwjysxXJurtDKK6LZlsgq8vhfI6dcEZTTLUDwMg42QpmKYYKrhnLS0oif_oTdpyrGOVykqWikV2Qi-2VK-_lfJ0O-aocRsDDQfyOX8j4HfKvzy3_Z36INdFXixBXLxu-rfDeC_Ael8oPo</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Voice, Angus T</creator><creator>Tresadern, Gary</creator><creator>Twidale, Rebecca M</creator><creator>van Vlijmen, Herman</creator><creator>Mulholland, Adrian J</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1015-4567</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid></search><sort><creationdate>20210421</creationdate><title>Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations</title><author>Voice, Angus T ; Tresadern, Gary ; Twidale, Rebecca M ; van Vlijmen, Herman ; Mulholland, Adrian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6e69f62a8fbe97355194986ae60dd1da1639a35ebb18ee6e8980bc7ece2215bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrylamide</topic><topic>Bonding</topic><topic>Chemistry</topic><topic>Covalence</topic><topic>Covalent bonds</topic><topic>Deactivation</topic><topic>Kinases</topic><topic>Molecular dynamics</topic><topic>Quantum mechanics</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voice, Angus T</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>Twidale, Rebecca M</creatorcontrib><creatorcontrib>van Vlijmen, Herman</creatorcontrib><creatorcontrib>Mulholland, Adrian J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voice, Angus T</au><au>Tresadern, Gary</au><au>Twidale, Rebecca M</au><au>van Vlijmen, Herman</au><au>Mulholland, Adrian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>12</volume><issue>15</issue><spage>5511</spage><epage>5516</epage><pages>5511-5516</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (Δ
G
‡
= 10.5 kcal mol
−1
) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets.
QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds
via
an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto-enol tautomerisation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33995994</pmid><doi>10.1039/d0sc06122k</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1015-4567</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2021-04, Vol.12 (15), p.5511-5516 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmed_primary_33995994 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Acrylamide Bonding Chemistry Covalence Covalent bonds Deactivation Kinases Molecular dynamics Quantum mechanics Tyrosine |
title | Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20covalent%20binding%20of%20ibrutinib%20to%20Bruton's%20tyrosine%20kinase%20revealed%20by%20QM/MM%20calculations&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Voice,%20Angus%20T&rft.date=2021-04-21&rft.volume=12&rft.issue=15&rft.spage=5511&rft.epage=5516&rft.pages=5511-5516&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc06122k&rft_dat=%3Cproquest_pubme%3E2528433071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515766806&rft_id=info:pmid/33995994&rfr_iscdi=true |