Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations

Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2021-04, Vol.12 (15), p.5511-5516
Hauptverfasser: Voice, Angus T, Tresadern, Gary, Twidale, Rebecca M, van Vlijmen, Herman, Mulholland, Adrian J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5516
container_issue 15
container_start_page 5511
container_title Chemical science (Cambridge)
container_volume 12
creator Voice, Angus T
Tresadern, Gary
Twidale, Rebecca M
van Vlijmen, Herman
Mulholland, Adrian J
description Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (Δ G ‡ = 10.5 kcal mol −1 ) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets. QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds via an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto-enol tautomerisation.
doi_str_mv 10.1039/d0sc06122k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33995994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528433071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6e69f62a8fbe97355194986ae60dd1da1639a35ebb18ee6e8980bc7ece2215bf3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhi1URKvSS-8gSz2AkNL6Y-21L0gQPkUjVBXOlu2dbd1u7GLvRsq_xyFtoPgyI8_jVzN-B6FjSk4p4fqsI8UTSRm7fYIOGGnoTAqu93Y5I_voqJQbUg_nVLD2GdrnXGuhdXOAYAH-2sZQljj12KeVHSCO2IXYhXi1uQsuT2OIweEx4fc1T_FVweM6pxIi4NsQbQGcYQX1aYfdGl8szhYL7O3gp8GOIcXyHD3t7VDg6D4eop-fPv6Yf5mdf__8df7ufOYbpsaZBKl7yazqHeiWC0F1o5W0IEnX0c5SybXlApyjCkCC0oo434IHxqhwPT9Eb7e6d5NbQufrKNkO5i6Hpc1rk2wwjysxXJurtDKK6LZlsgq8vhfI6dcEZTTLUDwMg42QpmKYYKrhnLS0oif_oTdpyrGOVykqWikV2Qi-2VK-_lfJ0O-aocRsDDQfyOX8j4HfKvzy3_Z36INdFXixBXLxu-rfDeC_Ael8oPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515766806</pqid></control><display><type>article</type><title>Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Voice, Angus T ; Tresadern, Gary ; Twidale, Rebecca M ; van Vlijmen, Herman ; Mulholland, Adrian J</creator><creatorcontrib>Voice, Angus T ; Tresadern, Gary ; Twidale, Rebecca M ; van Vlijmen, Herman ; Mulholland, Adrian J</creatorcontrib><description>Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (Δ G ‡ = 10.5 kcal mol −1 ) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets. QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds via an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto-enol tautomerisation.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc06122k</identifier><identifier>PMID: 33995994</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acrylamide ; Bonding ; Chemistry ; Covalence ; Covalent bonds ; Deactivation ; Kinases ; Molecular dynamics ; Quantum mechanics ; Tyrosine</subject><ispartof>Chemical science (Cambridge), 2021-04, Vol.12 (15), p.5511-5516</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6e69f62a8fbe97355194986ae60dd1da1639a35ebb18ee6e8980bc7ece2215bf3</citedby><cites>FETCH-LOGICAL-c428t-6e69f62a8fbe97355194986ae60dd1da1639a35ebb18ee6e8980bc7ece2215bf3</cites><orcidid>0000-0003-1015-4567 ; 0000-0002-4801-1644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097726/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097726/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33995994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voice, Angus T</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>Twidale, Rebecca M</creatorcontrib><creatorcontrib>van Vlijmen, Herman</creatorcontrib><creatorcontrib>Mulholland, Adrian J</creatorcontrib><title>Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (Δ G ‡ = 10.5 kcal mol −1 ) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets. QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds via an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto-enol tautomerisation.</description><subject>Acrylamide</subject><subject>Bonding</subject><subject>Chemistry</subject><subject>Covalence</subject><subject>Covalent bonds</subject><subject>Deactivation</subject><subject>Kinases</subject><subject>Molecular dynamics</subject><subject>Quantum mechanics</subject><subject>Tyrosine</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkk1vEzEQhi1URKvSS-8gSz2AkNL6Y-21L0gQPkUjVBXOlu2dbd1u7GLvRsq_xyFtoPgyI8_jVzN-B6FjSk4p4fqsI8UTSRm7fYIOGGnoTAqu93Y5I_voqJQbUg_nVLD2GdrnXGuhdXOAYAH-2sZQljj12KeVHSCO2IXYhXi1uQsuT2OIweEx4fc1T_FVweM6pxIi4NsQbQGcYQX1aYfdGl8szhYL7O3gp8GOIcXyHD3t7VDg6D4eop-fPv6Yf5mdf__8df7ufOYbpsaZBKl7yazqHeiWC0F1o5W0IEnX0c5SybXlApyjCkCC0oo434IHxqhwPT9Eb7e6d5NbQufrKNkO5i6Hpc1rk2wwjysxXJurtDKK6LZlsgq8vhfI6dcEZTTLUDwMg42QpmKYYKrhnLS0oif_oTdpyrGOVykqWikV2Qi-2VK-_lfJ0O-aocRsDDQfyOX8j4HfKvzy3_Z36INdFXixBXLxu-rfDeC_Ael8oPo</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Voice, Angus T</creator><creator>Tresadern, Gary</creator><creator>Twidale, Rebecca M</creator><creator>van Vlijmen, Herman</creator><creator>Mulholland, Adrian J</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1015-4567</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid></search><sort><creationdate>20210421</creationdate><title>Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations</title><author>Voice, Angus T ; Tresadern, Gary ; Twidale, Rebecca M ; van Vlijmen, Herman ; Mulholland, Adrian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6e69f62a8fbe97355194986ae60dd1da1639a35ebb18ee6e8980bc7ece2215bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrylamide</topic><topic>Bonding</topic><topic>Chemistry</topic><topic>Covalence</topic><topic>Covalent bonds</topic><topic>Deactivation</topic><topic>Kinases</topic><topic>Molecular dynamics</topic><topic>Quantum mechanics</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voice, Angus T</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><creatorcontrib>Twidale, Rebecca M</creatorcontrib><creatorcontrib>van Vlijmen, Herman</creatorcontrib><creatorcontrib>Mulholland, Adrian J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voice, Angus T</au><au>Tresadern, Gary</au><au>Twidale, Rebecca M</au><au>van Vlijmen, Herman</au><au>Mulholland, Adrian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>12</volume><issue>15</issue><spage>5511</spage><epage>5516</epage><pages>5511-5516</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (Δ G ‡ = 10.5 kcal mol −1 ) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets. QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds via an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto-enol tautomerisation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33995994</pmid><doi>10.1039/d0sc06122k</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1015-4567</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2021-04, Vol.12 (15), p.5511-5516
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmed_primary_33995994
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Acrylamide
Bonding
Chemistry
Covalence
Covalent bonds
Deactivation
Kinases
Molecular dynamics
Quantum mechanics
Tyrosine
title Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20covalent%20binding%20of%20ibrutinib%20to%20Bruton's%20tyrosine%20kinase%20revealed%20by%20QM/MM%20calculations&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Voice,%20Angus%20T&rft.date=2021-04-21&rft.volume=12&rft.issue=15&rft.spage=5511&rft.epage=5516&rft.pages=5511-5516&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc06122k&rft_dat=%3Cproquest_pubme%3E2528433071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515766806&rft_id=info:pmid/33995994&rfr_iscdi=true