Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis
We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2021-05, Vol.206 (10), p.2420-2429 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2429 |
---|---|
container_issue | 10 |
container_start_page | 2420 |
container_title | The Journal of immunology (1950) |
container_volume | 206 |
creator | Occhigrossi, Luca Rossin, Federica D'Eletto, Manuela Farrace, Maria Grazia Ciccosanti, Fabiola Petrone, Linda Sacchi, Alessandra Nardacci, Roberta Falasca, Laura Del Nonno, Franca Palucci, Ivana Smirnov, Evgeni Barlev, Nick Agrati, Chiara Goletti, Delia Delogu, Giovanni Fimia, Gian Maria Piacentini, Mauro |
description | We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-β production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNβ production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-β production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA. |
doi_str_mv | 10.4049/jimmunol.2001122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_pubmed_primary_33941660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522191436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-43b20b6ab927abff034b5da3e0a814d0836a9952a78b25155e9d67534ddc02a33</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxujEUTvnkyPXgavr13HjmgEF1ETmOel3Toc2Tpct0T-e0cAT9_D98fL-xByz2AsQISTbVFVna3LMQIwhnhBhsz3wZMS5CUZAiB6LJDBgNw4twUACSiuyYDzULA-NCTruFHWbcquVVVhlTMU6cpsulK1xtHI2l5pdLhStHuq9_S9zg5mYTe0_TZ0HUcfi0n89MYm0WrO6ey3cLfkKlelM3cnHZGv-Uv8_OotPxfR82zppQKC1hNcI2ipdIiB0nkOXGg_U9yAmjKRwZRLFYY-qmCq0e__MmEmA5-LLEsBFecj8njc3TX1T2dcm1SFS01ZKmvqziXoI7KQCS77KByjaVM715g82TVFpZp9wiA5oEzOKJMTyr7ycFrvdGWy_8KZHf8DhoRvYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522191436</pqid></control><display><type>article</type><title>Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Occhigrossi, Luca ; Rossin, Federica ; D'Eletto, Manuela ; Farrace, Maria Grazia ; Ciccosanti, Fabiola ; Petrone, Linda ; Sacchi, Alessandra ; Nardacci, Roberta ; Falasca, Laura ; Del Nonno, Franca ; Palucci, Ivana ; Smirnov, Evgeni ; Barlev, Nick ; Agrati, Chiara ; Goletti, Delia ; Delogu, Giovanni ; Fimia, Gian Maria ; Piacentini, Mauro</creator><creatorcontrib>Occhigrossi, Luca ; Rossin, Federica ; D'Eletto, Manuela ; Farrace, Maria Grazia ; Ciccosanti, Fabiola ; Petrone, Linda ; Sacchi, Alessandra ; Nardacci, Roberta ; Falasca, Laura ; Del Nonno, Franca ; Palucci, Ivana ; Smirnov, Evgeni ; Barlev, Nick ; Agrati, Chiara ; Goletti, Delia ; Delogu, Giovanni ; Fimia, Gian Maria ; Piacentini, Mauro</creatorcontrib><description>We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-β production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNβ production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-β production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.2001122</identifier><identifier>PMID: 33941660</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; COVID-19 - genetics ; COVID-19 - immunology ; COVID-19 - pathology ; GTP-Binding Proteins - genetics ; GTP-Binding Proteins - immunology ; Humans ; Immunity, Innate ; Interferon Regulatory Factor-3 - genetics ; Interferon Regulatory Factor-3 - immunology ; Interferon-beta - genetics ; Interferon-beta - immunology ; Membrane Proteins - genetics ; Membrane Proteins - immunology ; Mice ; Mice, Knockout ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - immunology ; SARS-CoV-2 - immunology ; Signal Transduction - genetics ; Signal Transduction - immunology ; Transglutaminases - genetics ; Transglutaminases - immunology</subject><ispartof>The Journal of immunology (1950), 2021-05, Vol.206 (10), p.2420-2429</ispartof><rights>Copyright © 2021 by The American Association of Immunologists, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-43b20b6ab927abff034b5da3e0a814d0836a9952a78b25155e9d67534ddc02a33</citedby><cites>FETCH-LOGICAL-c407t-43b20b6ab927abff034b5da3e0a814d0836a9952a78b25155e9d67534ddc02a33</cites><orcidid>0000-0002-1674-7091 ; 0000-0003-2106-1761 ; 0000-0001-6664-9257 ; 0000-0003-0481-6878 ; 0000-0003-0182-8267 ; 0000-0002-9209-1207 ; 0000-0001-8360-4376 ; 0000-0001-6987-920X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33941660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Occhigrossi, Luca</creatorcontrib><creatorcontrib>Rossin, Federica</creatorcontrib><creatorcontrib>D'Eletto, Manuela</creatorcontrib><creatorcontrib>Farrace, Maria Grazia</creatorcontrib><creatorcontrib>Ciccosanti, Fabiola</creatorcontrib><creatorcontrib>Petrone, Linda</creatorcontrib><creatorcontrib>Sacchi, Alessandra</creatorcontrib><creatorcontrib>Nardacci, Roberta</creatorcontrib><creatorcontrib>Falasca, Laura</creatorcontrib><creatorcontrib>Del Nonno, Franca</creatorcontrib><creatorcontrib>Palucci, Ivana</creatorcontrib><creatorcontrib>Smirnov, Evgeni</creatorcontrib><creatorcontrib>Barlev, Nick</creatorcontrib><creatorcontrib>Agrati, Chiara</creatorcontrib><creatorcontrib>Goletti, Delia</creatorcontrib><creatorcontrib>Delogu, Giovanni</creatorcontrib><creatorcontrib>Fimia, Gian Maria</creatorcontrib><creatorcontrib>Piacentini, Mauro</creatorcontrib><title>Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-β production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNβ production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-β production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.</description><subject>Animals</subject><subject>COVID-19 - genetics</subject><subject>COVID-19 - immunology</subject><subject>COVID-19 - pathology</subject><subject>GTP-Binding Proteins - genetics</subject><subject>GTP-Binding Proteins - immunology</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Interferon Regulatory Factor-3 - genetics</subject><subject>Interferon Regulatory Factor-3 - immunology</subject><subject>Interferon-beta - genetics</subject><subject>Interferon-beta - immunology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - immunology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - immunology</subject><subject>SARS-CoV-2 - immunology</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>Transglutaminases - genetics</subject><subject>Transglutaminases - immunology</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM9PwjAUxxujEUTvnkyPXgavr13HjmgEF1ETmOel3Toc2Tpct0T-e0cAT9_D98fL-xByz2AsQISTbVFVna3LMQIwhnhBhsz3wZMS5CUZAiB6LJDBgNw4twUACSiuyYDzULA-NCTruFHWbcquVVVhlTMU6cpsulK1xtHI2l5pdLhStHuq9_S9zg5mYTe0_TZ0HUcfi0n89MYm0WrO6ey3cLfkKlelM3cnHZGv-Uv8_OotPxfR82zppQKC1hNcI2ipdIiB0nkOXGg_U9yAmjKRwZRLFYY-qmCq0e__MmEmA5-LLEsBFecj8njc3TX1T2dcm1SFS01ZKmvqziXoI7KQCS77KByjaVM715g82TVFpZp9wiA5oEzOKJMTyr7ycFrvdGWy_8KZHf8DhoRvYw</recordid><startdate>20210515</startdate><enddate>20210515</enddate><creator>Occhigrossi, Luca</creator><creator>Rossin, Federica</creator><creator>D'Eletto, Manuela</creator><creator>Farrace, Maria Grazia</creator><creator>Ciccosanti, Fabiola</creator><creator>Petrone, Linda</creator><creator>Sacchi, Alessandra</creator><creator>Nardacci, Roberta</creator><creator>Falasca, Laura</creator><creator>Del Nonno, Franca</creator><creator>Palucci, Ivana</creator><creator>Smirnov, Evgeni</creator><creator>Barlev, Nick</creator><creator>Agrati, Chiara</creator><creator>Goletti, Delia</creator><creator>Delogu, Giovanni</creator><creator>Fimia, Gian Maria</creator><creator>Piacentini, Mauro</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1674-7091</orcidid><orcidid>https://orcid.org/0000-0003-2106-1761</orcidid><orcidid>https://orcid.org/0000-0001-6664-9257</orcidid><orcidid>https://orcid.org/0000-0003-0481-6878</orcidid><orcidid>https://orcid.org/0000-0003-0182-8267</orcidid><orcidid>https://orcid.org/0000-0002-9209-1207</orcidid><orcidid>https://orcid.org/0000-0001-8360-4376</orcidid><orcidid>https://orcid.org/0000-0001-6987-920X</orcidid></search><sort><creationdate>20210515</creationdate><title>Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis</title><author>Occhigrossi, Luca ; Rossin, Federica ; D'Eletto, Manuela ; Farrace, Maria Grazia ; Ciccosanti, Fabiola ; Petrone, Linda ; Sacchi, Alessandra ; Nardacci, Roberta ; Falasca, Laura ; Del Nonno, Franca ; Palucci, Ivana ; Smirnov, Evgeni ; Barlev, Nick ; Agrati, Chiara ; Goletti, Delia ; Delogu, Giovanni ; Fimia, Gian Maria ; Piacentini, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-43b20b6ab927abff034b5da3e0a814d0836a9952a78b25155e9d67534ddc02a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>COVID-19 - genetics</topic><topic>COVID-19 - immunology</topic><topic>COVID-19 - pathology</topic><topic>GTP-Binding Proteins - genetics</topic><topic>GTP-Binding Proteins - immunology</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Interferon Regulatory Factor-3 - genetics</topic><topic>Interferon Regulatory Factor-3 - immunology</topic><topic>Interferon-beta - genetics</topic><topic>Interferon-beta - immunology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - immunology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - immunology</topic><topic>SARS-CoV-2 - immunology</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>Transglutaminases - genetics</topic><topic>Transglutaminases - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Occhigrossi, Luca</creatorcontrib><creatorcontrib>Rossin, Federica</creatorcontrib><creatorcontrib>D'Eletto, Manuela</creatorcontrib><creatorcontrib>Farrace, Maria Grazia</creatorcontrib><creatorcontrib>Ciccosanti, Fabiola</creatorcontrib><creatorcontrib>Petrone, Linda</creatorcontrib><creatorcontrib>Sacchi, Alessandra</creatorcontrib><creatorcontrib>Nardacci, Roberta</creatorcontrib><creatorcontrib>Falasca, Laura</creatorcontrib><creatorcontrib>Del Nonno, Franca</creatorcontrib><creatorcontrib>Palucci, Ivana</creatorcontrib><creatorcontrib>Smirnov, Evgeni</creatorcontrib><creatorcontrib>Barlev, Nick</creatorcontrib><creatorcontrib>Agrati, Chiara</creatorcontrib><creatorcontrib>Goletti, Delia</creatorcontrib><creatorcontrib>Delogu, Giovanni</creatorcontrib><creatorcontrib>Fimia, Gian Maria</creatorcontrib><creatorcontrib>Piacentini, Mauro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Occhigrossi, Luca</au><au>Rossin, Federica</au><au>D'Eletto, Manuela</au><au>Farrace, Maria Grazia</au><au>Ciccosanti, Fabiola</au><au>Petrone, Linda</au><au>Sacchi, Alessandra</au><au>Nardacci, Roberta</au><au>Falasca, Laura</au><au>Del Nonno, Franca</au><au>Palucci, Ivana</au><au>Smirnov, Evgeni</au><au>Barlev, Nick</au><au>Agrati, Chiara</au><au>Goletti, Delia</au><au>Delogu, Giovanni</au><au>Fimia, Gian Maria</au><au>Piacentini, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2021-05-15</date><risdate>2021</risdate><volume>206</volume><issue>10</issue><spage>2420</spage><epage>2429</epage><pages>2420-2429</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-β production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNβ production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-β production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.</abstract><cop>United States</cop><pmid>33941660</pmid><doi>10.4049/jimmunol.2001122</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1674-7091</orcidid><orcidid>https://orcid.org/0000-0003-2106-1761</orcidid><orcidid>https://orcid.org/0000-0001-6664-9257</orcidid><orcidid>https://orcid.org/0000-0003-0481-6878</orcidid><orcidid>https://orcid.org/0000-0003-0182-8267</orcidid><orcidid>https://orcid.org/0000-0002-9209-1207</orcidid><orcidid>https://orcid.org/0000-0001-8360-4376</orcidid><orcidid>https://orcid.org/0000-0001-6987-920X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1767 |
ispartof | The Journal of immunology (1950), 2021-05, Vol.206 (10), p.2420-2429 |
issn | 0022-1767 1550-6606 |
language | eng |
recordid | cdi_pubmed_primary_33941660 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals COVID-19 - genetics COVID-19 - immunology COVID-19 - pathology GTP-Binding Proteins - genetics GTP-Binding Proteins - immunology Humans Immunity, Innate Interferon Regulatory Factor-3 - genetics Interferon Regulatory Factor-3 - immunology Interferon-beta - genetics Interferon-beta - immunology Membrane Proteins - genetics Membrane Proteins - immunology Mice Mice, Knockout Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - immunology SARS-CoV-2 - immunology Signal Transduction - genetics Signal Transduction - immunology Transglutaminases - genetics Transglutaminases - immunology |
title | Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transglutaminase%202%20Regulates%20Innate%20Immunity%20by%20Modulating%20the%20STING/TBK1/IRF3%20Axis&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Occhigrossi,%20Luca&rft.date=2021-05-15&rft.volume=206&rft.issue=10&rft.spage=2420&rft.epage=2429&rft.pages=2420-2429&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.2001122&rft_dat=%3Cproquest_cross%3E2522191436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522191436&rft_id=info:pmid/33941660&rfr_iscdi=true |