Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees

Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-04, Vol.118 (17), p.1-10, Article 2017317118
Hauptverfasser: Kling, Matthew M., Ackerly, David D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 17
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Kling, Matthew M.
Ackerly, David D.
description Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity. For each of these distinct hypotheses, partial correlations between the respective wind and genetic metrics (controlling for distance and climate) are positive for a significant majority of wind-dispersed or wind-pollinated genetic data sets and increase significantly across functional groups expected to be increasingly influenced by wind. Together, these results indicate that the geography of both wind strength and wind direction play important roles in shaping large-scale genetic patterns across the world’s forests. These findings have implications for various aspects of basic plant ecology and evolution, as well as the response of biodiversity to future global change.
doi_str_mv 10.1073/pnas.2017317118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33875589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040206</jstor_id><sourcerecordid>27040206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-eddc26349c5599a161c56a6408290621a0c48e20b15c653f88bd0426c2c1f7a43</originalsourceid><addsrcrecordid>eNqNkU1vEzEURUcIRNPCmhVoJJZl2udve1MJRVCQKrGBteXxeBpHE3uwnUb59zikpLBjZcvv3OsnnaZ5g-AKgSDXczD5CgMSBAmE5LNmgUChjlMFz5sFABadpJieNec5rwFAMQkvmzNCpGBMqkWzup1ib6Z258PQzqYUl0Ju88rMrr13wRVv28GPo0suFG-Kj-FDa_J-s3El1dmBaccp7uprbXiKPLiUfdm3PrQlOZdfNS9GM2X3-vG8aH58_vR9-aW7-3b7dfnxrrOUktK5YbCYE6osY0oZxJFl3HAKEivgGBmwVDoMPWKWMzJK2Q9AMbfYolEYSi6am2PvvO03brB17WQmPSe_MWmvo_H630nwK30fH7QEhSkXteD9Y0GKP7cuF72O2xTqzhozpCjBkstKXR8pm2LOyY2nHxDogxp9UKOf1NTEu78XO_F_XFTg8gjsXB_HbL0L1p2wKo9TIRRn9YZRpeX_00tffqtbxm0oNfr2GF3nEtMpgwVQwMDJL4rOtl0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519432868</pqid></control><display><type>article</type><title>Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees</title><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kling, Matthew M. ; Ackerly, David D.</creator><creatorcontrib>Kling, Matthew M. ; Ackerly, David D.</creatorcontrib><description>Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity. For each of these distinct hypotheses, partial correlations between the respective wind and genetic metrics (controlling for distance and climate) are positive for a significant majority of wind-dispersed or wind-pollinated genetic data sets and increase significantly across functional groups expected to be increasingly influenced by wind. Together, these results indicate that the geography of both wind strength and wind direction play important roles in shaping large-scale genetic patterns across the world’s forests. These findings have implications for various aspects of basic plant ecology and evolution, as well as the response of biodiversity to future global change.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2017317118</identifier><identifier>PMID: 33875589</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Asymmetry ; Biodiversity ; Biological Sciences ; Dispersion ; Evolution ; Functional groups ; Gene flow ; Genetic diversity ; Genetics ; Geography ; Landscape ; Multidisciplinary Sciences ; Plant ecology ; Pollen ; Pollination ; Population genetics ; Populations ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Seed dispersal ; Seeds ; Wind ; Wind currents ; Wind direction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (17), p.1-10, Article 2017317118</ispartof><rights>Copyright National Academy of Sciences Apr 27, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>38</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000647796500021</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c443t-eddc26349c5599a161c56a6408290621a0c48e20b15c653f88bd0426c2c1f7a43</citedby><cites>FETCH-LOGICAL-c443t-eddc26349c5599a161c56a6408290621a0c48e20b15c653f88bd0426c2c1f7a43</cites><orcidid>0000-0001-9073-4240 ; 0000-0002-1847-7398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040206$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040206$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,39267,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33875589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kling, Matthew M.</creatorcontrib><creatorcontrib>Ackerly, David D.</creatorcontrib><title>Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity. For each of these distinct hypotheses, partial correlations between the respective wind and genetic metrics (controlling for distance and climate) are positive for a significant majority of wind-dispersed or wind-pollinated genetic data sets and increase significantly across functional groups expected to be increasingly influenced by wind. Together, these results indicate that the geography of both wind strength and wind direction play important roles in shaping large-scale genetic patterns across the world’s forests. These findings have implications for various aspects of basic plant ecology and evolution, as well as the response of biodiversity to future global change.</description><subject>Asymmetry</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Dispersion</subject><subject>Evolution</subject><subject>Functional groups</subject><subject>Gene flow</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Geography</subject><subject>Landscape</subject><subject>Multidisciplinary Sciences</subject><subject>Plant ecology</subject><subject>Pollen</subject><subject>Pollination</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Seed dispersal</subject><subject>Seeds</subject><subject>Wind</subject><subject>Wind currents</subject><subject>Wind direction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1vEzEURUcIRNPCmhVoJJZl2udve1MJRVCQKrGBteXxeBpHE3uwnUb59zikpLBjZcvv3OsnnaZ5g-AKgSDXczD5CgMSBAmE5LNmgUChjlMFz5sFABadpJieNec5rwFAMQkvmzNCpGBMqkWzup1ib6Z258PQzqYUl0Ju88rMrr13wRVv28GPo0suFG-Kj-FDa_J-s3El1dmBaccp7uprbXiKPLiUfdm3PrQlOZdfNS9GM2X3-vG8aH58_vR9-aW7-3b7dfnxrrOUktK5YbCYE6osY0oZxJFl3HAKEivgGBmwVDoMPWKWMzJK2Q9AMbfYolEYSi6am2PvvO03brB17WQmPSe_MWmvo_H630nwK30fH7QEhSkXteD9Y0GKP7cuF72O2xTqzhozpCjBkstKXR8pm2LOyY2nHxDogxp9UKOf1NTEu78XO_F_XFTg8gjsXB_HbL0L1p2wKo9TIRRn9YZRpeX_00tffqtbxm0oNfr2GF3nEtMpgwVQwMDJL4rOtl0</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Kling, Matthew M.</creator><creator>Ackerly, David D.</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9073-4240</orcidid><orcidid>https://orcid.org/0000-0002-1847-7398</orcidid></search><sort><creationdate>20210427</creationdate><title>Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees</title><author>Kling, Matthew M. ; Ackerly, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-eddc26349c5599a161c56a6408290621a0c48e20b15c653f88bd0426c2c1f7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Dispersion</topic><topic>Evolution</topic><topic>Functional groups</topic><topic>Gene flow</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Geography</topic><topic>Landscape</topic><topic>Multidisciplinary Sciences</topic><topic>Plant ecology</topic><topic>Pollen</topic><topic>Pollination</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Seed dispersal</topic><topic>Seeds</topic><topic>Wind</topic><topic>Wind currents</topic><topic>Wind direction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kling, Matthew M.</creatorcontrib><creatorcontrib>Ackerly, David D.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kling, Matthew M.</au><au>Ackerly, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-04-27</date><risdate>2021</risdate><volume>118</volume><issue>17</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>2017317118</artnum><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity. For each of these distinct hypotheses, partial correlations between the respective wind and genetic metrics (controlling for distance and climate) are positive for a significant majority of wind-dispersed or wind-pollinated genetic data sets and increase significantly across functional groups expected to be increasingly influenced by wind. Together, these results indicate that the geography of both wind strength and wind direction play important roles in shaping large-scale genetic patterns across the world’s forests. These findings have implications for various aspects of basic plant ecology and evolution, as well as the response of biodiversity to future global change.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>33875589</pmid><doi>10.1073/pnas.2017317118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9073-4240</orcidid><orcidid>https://orcid.org/0000-0002-1847-7398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (17), p.1-10, Article 2017317118
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_33875589
source JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Asymmetry
Biodiversity
Biological Sciences
Dispersion
Evolution
Functional groups
Gene flow
Genetic diversity
Genetics
Geography
Landscape
Multidisciplinary Sciences
Plant ecology
Pollen
Pollination
Population genetics
Populations
Science & Technology
Science & Technology - Other Topics
Seed dispersal
Seeds
Wind
Wind currents
Wind direction
title Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20wind%20patterns%20shape%20genetic%20differentiation,%20asymmetric%20gene%20flow,%20and%20genetic%20diversity%20in%20trees&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kling,%20Matthew%20M.&rft.date=2021-04-27&rft.volume=118&rft.issue=17&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=2017317118&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2017317118&rft_dat=%3Cjstor_pubme%3E27040206%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519432868&rft_id=info:pmid/33875589&rft_jstor_id=27040206&rfr_iscdi=true