Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network
Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifac...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2021-08, Vol.40 (8), p.2170-2181 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2181 |
---|---|
container_issue | 8 |
container_start_page | 2170 |
container_title | IEEE transactions on medical imaging |
container_volume | 40 |
creator | Lyu, Qing Shan, Hongming Xie, Yibin Kwan, Alan C. Otaki, Yuka Kuronuma, Keiichiro Li, Debiao Wang, Ge |
description | Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences. |
doi_str_mv | 10.1109/TMI.2021.3073381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_33856986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9405626</ieee_id><sourcerecordid>2556486540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e9a63ea72b8713aa4d4d360b7a0d3278a66dda49047308cac45827c05f7068e83</originalsourceid><addsrcrecordid>eNpdkc2LE0EQxRtZMTF6FwQZ2IuXidXfPZeFEPwIbhTCLnhrKj2dtWMyvds9o_jf2zExqKeCql89XtUj5AWFKaXQvLlZLqYMGJ1y0Jwb-oiMqZSmZlJ8uSBjYNrUAIqNyNOctwBUSGiekFFhpWqMGpOP89D5ao6pDeiq5WpRLWMfYlfNUh826Ppq5dvB_W7d5tDdVVg6bkjJd331yQ8Jd6X0P2L69ow83uAu--enOiG3797ezD_U15_fL-az69oJIfraN6i4R83WRlOOKFrRcgVrjdDy4hiValsUDQjNwTh0QhqmHciNBmW84RNyddS9H9Z737ripLiw9ynsMf20EYP9d9KFr_YufreGa8UYLwKvTwIpPgw-93YfsvO7HXY-DtkyWR7VUG1UQS__Q7dxSF05r1BSCaOkgELBkXIp5pz85myGgj0kZUtS9pCUPSVVVl79fcR54U80BXh5BIL3_jxuBEjFFP8FOViWbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556486540</pqid></control><display><type>article</type><title>Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Lyu, Qing ; Shan, Hongming ; Xie, Yibin ; Kwan, Alan C. ; Otaki, Yuka ; Kuronuma, Keiichiro ; Li, Debiao ; Wang, Ge</creator><creatorcontrib>Lyu, Qing ; Shan, Hongming ; Xie, Yibin ; Kwan, Alan C. ; Otaki, Yuka ; Kuronuma, Keiichiro ; Li, Debiao ; Wang, Ge</creatorcontrib><description>Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3073381</identifier><identifier>PMID: 33856986</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cardiac magnetic resonance imaging (MRI) ; Computed tomography ; Coronary artery disease ; Deep learning ; fast MRI ; Feature extraction ; Generative adversarial networks ; Heart diseases ; Image quality ; Image reconstruction ; Image resolution ; Long short-term memory ; Magnetic resonance imaging ; Medical imaging ; motion artifact reduction ; Motion artifacts ; Motivation ; Neural networks ; recurrent neural network ; Recurrent neural networks ; Reduction (metal working) ; Spatial resolution ; Temporal resolution ; Temporal variations</subject><ispartof>IEEE transactions on medical imaging, 2021-08, Vol.40 (8), p.2170-2181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e9a63ea72b8713aa4d4d360b7a0d3278a66dda49047308cac45827c05f7068e83</citedby><cites>FETCH-LOGICAL-c444t-e9a63ea72b8713aa4d4d360b7a0d3278a66dda49047308cac45827c05f7068e83</cites><orcidid>0000-0002-2656-7705 ; 0000-0002-9824-0170 ; 0000-0002-3911-0042 ; 0000-0002-0333-567X ; 0000-0002-4393-1011 ; 0000-0001-8560-8231 ; 0000-0002-0604-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9405626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9405626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyu, Qing</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><creatorcontrib>Xie, Yibin</creatorcontrib><creatorcontrib>Kwan, Alan C.</creatorcontrib><creatorcontrib>Otaki, Yuka</creatorcontrib><creatorcontrib>Kuronuma, Keiichiro</creatorcontrib><creatorcontrib>Li, Debiao</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><title>Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences.</description><subject>Cardiac magnetic resonance imaging (MRI)</subject><subject>Computed tomography</subject><subject>Coronary artery disease</subject><subject>Deep learning</subject><subject>fast MRI</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Heart diseases</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Long short-term memory</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>motion artifact reduction</subject><subject>Motion artifacts</subject><subject>Motivation</subject><subject>Neural networks</subject><subject>recurrent neural network</subject><subject>Recurrent neural networks</subject><subject>Reduction (metal working)</subject><subject>Spatial resolution</subject><subject>Temporal resolution</subject><subject>Temporal variations</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc2LE0EQxRtZMTF6FwQZ2IuXidXfPZeFEPwIbhTCLnhrKj2dtWMyvds9o_jf2zExqKeCql89XtUj5AWFKaXQvLlZLqYMGJ1y0Jwb-oiMqZSmZlJ8uSBjYNrUAIqNyNOctwBUSGiekFFhpWqMGpOP89D5ao6pDeiq5WpRLWMfYlfNUh826Ppq5dvB_W7d5tDdVVg6bkjJd331yQ8Jd6X0P2L69ow83uAu--enOiG3797ezD_U15_fL-az69oJIfraN6i4R83WRlOOKFrRcgVrjdDy4hiValsUDQjNwTh0QhqmHciNBmW84RNyddS9H9Z737ripLiw9ynsMf20EYP9d9KFr_YufreGa8UYLwKvTwIpPgw-93YfsvO7HXY-DtkyWR7VUG1UQS__Q7dxSF05r1BSCaOkgELBkXIp5pz85myGgj0kZUtS9pCUPSVVVl79fcR54U80BXh5BIL3_jxuBEjFFP8FOViWbg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lyu, Qing</creator><creator>Shan, Hongming</creator><creator>Xie, Yibin</creator><creator>Kwan, Alan C.</creator><creator>Otaki, Yuka</creator><creator>Kuronuma, Keiichiro</creator><creator>Li, Debiao</creator><creator>Wang, Ge</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0000-0002-9824-0170</orcidid><orcidid>https://orcid.org/0000-0002-3911-0042</orcidid><orcidid>https://orcid.org/0000-0002-0333-567X</orcidid><orcidid>https://orcid.org/0000-0002-4393-1011</orcidid><orcidid>https://orcid.org/0000-0001-8560-8231</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid></search><sort><creationdate>20210801</creationdate><title>Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network</title><author>Lyu, Qing ; Shan, Hongming ; Xie, Yibin ; Kwan, Alan C. ; Otaki, Yuka ; Kuronuma, Keiichiro ; Li, Debiao ; Wang, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e9a63ea72b8713aa4d4d360b7a0d3278a66dda49047308cac45827c05f7068e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cardiac magnetic resonance imaging (MRI)</topic><topic>Computed tomography</topic><topic>Coronary artery disease</topic><topic>Deep learning</topic><topic>fast MRI</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Heart diseases</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Long short-term memory</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>motion artifact reduction</topic><topic>Motion artifacts</topic><topic>Motivation</topic><topic>Neural networks</topic><topic>recurrent neural network</topic><topic>Recurrent neural networks</topic><topic>Reduction (metal working)</topic><topic>Spatial resolution</topic><topic>Temporal resolution</topic><topic>Temporal variations</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Qing</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><creatorcontrib>Xie, Yibin</creatorcontrib><creatorcontrib>Kwan, Alan C.</creatorcontrib><creatorcontrib>Otaki, Yuka</creatorcontrib><creatorcontrib>Kuronuma, Keiichiro</creatorcontrib><creatorcontrib>Li, Debiao</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lyu, Qing</au><au>Shan, Hongming</au><au>Xie, Yibin</au><au>Kwan, Alan C.</au><au>Otaki, Yuka</au><au>Kuronuma, Keiichiro</au><au>Li, Debiao</au><au>Wang, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>40</volume><issue>8</issue><spage>2170</spage><epage>2181</epage><pages>2170-2181</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33856986</pmid><doi>10.1109/TMI.2021.3073381</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0000-0002-9824-0170</orcidid><orcidid>https://orcid.org/0000-0002-3911-0042</orcidid><orcidid>https://orcid.org/0000-0002-0333-567X</orcidid><orcidid>https://orcid.org/0000-0002-4393-1011</orcidid><orcidid>https://orcid.org/0000-0001-8560-8231</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2021-08, Vol.40 (8), p.2170-2181 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_pubmed_primary_33856986 |
source | IEEE Electronic Library (IEL) |
subjects | Cardiac magnetic resonance imaging (MRI) Computed tomography Coronary artery disease Deep learning fast MRI Feature extraction Generative adversarial networks Heart diseases Image quality Image reconstruction Image resolution Long short-term memory Magnetic resonance imaging Medical imaging motion artifact reduction Motion artifacts Motivation Neural networks recurrent neural network Recurrent neural networks Reduction (metal working) Spatial resolution Temporal resolution Temporal variations |
title | Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cine%20Cardiac%20MRI%20Motion%20Artifact%20Reduction%20Using%20a%20Recurrent%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Lyu,%20Qing&rft.date=2021-08-01&rft.volume=40&rft.issue=8&rft.spage=2170&rft.epage=2181&rft.pages=2170-2181&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3073381&rft_dat=%3Cproquest_RIE%3E2556486540%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556486540&rft_id=info:pmid/33856986&rft_ieee_id=9405626&rfr_iscdi=true |