Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network

Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-08, Vol.40 (8), p.2170-2181
Hauptverfasser: Lyu, Qing, Shan, Hongming, Xie, Yibin, Kwan, Alan C., Otaki, Yuka, Kuronuma, Keiichiro, Li, Debiao, Wang, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2181
container_issue 8
container_start_page 2170
container_title IEEE transactions on medical imaging
container_volume 40
creator Lyu, Qing
Shan, Hongming
Xie, Yibin
Kwan, Alan C.
Otaki, Yuka
Kuronuma, Keiichiro
Li, Debiao
Wang, Ge
description Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences.
doi_str_mv 10.1109/TMI.2021.3073381
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_33856986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9405626</ieee_id><sourcerecordid>2556486540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e9a63ea72b8713aa4d4d360b7a0d3278a66dda49047308cac45827c05f7068e83</originalsourceid><addsrcrecordid>eNpdkc2LE0EQxRtZMTF6FwQZ2IuXidXfPZeFEPwIbhTCLnhrKj2dtWMyvds9o_jf2zExqKeCql89XtUj5AWFKaXQvLlZLqYMGJ1y0Jwb-oiMqZSmZlJ8uSBjYNrUAIqNyNOctwBUSGiekFFhpWqMGpOP89D5ao6pDeiq5WpRLWMfYlfNUh826Ppq5dvB_W7d5tDdVVg6bkjJd331yQ8Jd6X0P2L69ow83uAu--enOiG3797ezD_U15_fL-az69oJIfraN6i4R83WRlOOKFrRcgVrjdDy4hiValsUDQjNwTh0QhqmHciNBmW84RNyddS9H9Z737ripLiw9ynsMf20EYP9d9KFr_YufreGa8UYLwKvTwIpPgw-93YfsvO7HXY-DtkyWR7VUG1UQS__Q7dxSF05r1BSCaOkgELBkXIp5pz85myGgj0kZUtS9pCUPSVVVl79fcR54U80BXh5BIL3_jxuBEjFFP8FOViWbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556486540</pqid></control><display><type>article</type><title>Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Lyu, Qing ; Shan, Hongming ; Xie, Yibin ; Kwan, Alan C. ; Otaki, Yuka ; Kuronuma, Keiichiro ; Li, Debiao ; Wang, Ge</creator><creatorcontrib>Lyu, Qing ; Shan, Hongming ; Xie, Yibin ; Kwan, Alan C. ; Otaki, Yuka ; Kuronuma, Keiichiro ; Li, Debiao ; Wang, Ge</creatorcontrib><description>Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3073381</identifier><identifier>PMID: 33856986</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cardiac magnetic resonance imaging (MRI) ; Computed tomography ; Coronary artery disease ; Deep learning ; fast MRI ; Feature extraction ; Generative adversarial networks ; Heart diseases ; Image quality ; Image reconstruction ; Image resolution ; Long short-term memory ; Magnetic resonance imaging ; Medical imaging ; motion artifact reduction ; Motion artifacts ; Motivation ; Neural networks ; recurrent neural network ; Recurrent neural networks ; Reduction (metal working) ; Spatial resolution ; Temporal resolution ; Temporal variations</subject><ispartof>IEEE transactions on medical imaging, 2021-08, Vol.40 (8), p.2170-2181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e9a63ea72b8713aa4d4d360b7a0d3278a66dda49047308cac45827c05f7068e83</citedby><cites>FETCH-LOGICAL-c444t-e9a63ea72b8713aa4d4d360b7a0d3278a66dda49047308cac45827c05f7068e83</cites><orcidid>0000-0002-2656-7705 ; 0000-0002-9824-0170 ; 0000-0002-3911-0042 ; 0000-0002-0333-567X ; 0000-0002-4393-1011 ; 0000-0001-8560-8231 ; 0000-0002-0604-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9405626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9405626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyu, Qing</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><creatorcontrib>Xie, Yibin</creatorcontrib><creatorcontrib>Kwan, Alan C.</creatorcontrib><creatorcontrib>Otaki, Yuka</creatorcontrib><creatorcontrib>Kuronuma, Keiichiro</creatorcontrib><creatorcontrib>Li, Debiao</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><title>Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences.</description><subject>Cardiac magnetic resonance imaging (MRI)</subject><subject>Computed tomography</subject><subject>Coronary artery disease</subject><subject>Deep learning</subject><subject>fast MRI</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Heart diseases</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Long short-term memory</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>motion artifact reduction</subject><subject>Motion artifacts</subject><subject>Motivation</subject><subject>Neural networks</subject><subject>recurrent neural network</subject><subject>Recurrent neural networks</subject><subject>Reduction (metal working)</subject><subject>Spatial resolution</subject><subject>Temporal resolution</subject><subject>Temporal variations</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc2LE0EQxRtZMTF6FwQZ2IuXidXfPZeFEPwIbhTCLnhrKj2dtWMyvds9o_jf2zExqKeCql89XtUj5AWFKaXQvLlZLqYMGJ1y0Jwb-oiMqZSmZlJ8uSBjYNrUAIqNyNOctwBUSGiekFFhpWqMGpOP89D5ao6pDeiq5WpRLWMfYlfNUh826Ppq5dvB_W7d5tDdVVg6bkjJd331yQ8Jd6X0P2L69ow83uAu--enOiG3797ezD_U15_fL-az69oJIfraN6i4R83WRlOOKFrRcgVrjdDy4hiValsUDQjNwTh0QhqmHciNBmW84RNyddS9H9Z737ripLiw9ynsMf20EYP9d9KFr_YufreGa8UYLwKvTwIpPgw-93YfsvO7HXY-DtkyWR7VUG1UQS__Q7dxSF05r1BSCaOkgELBkXIp5pz85myGgj0kZUtS9pCUPSVVVl79fcR54U80BXh5BIL3_jxuBEjFFP8FOViWbg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lyu, Qing</creator><creator>Shan, Hongming</creator><creator>Xie, Yibin</creator><creator>Kwan, Alan C.</creator><creator>Otaki, Yuka</creator><creator>Kuronuma, Keiichiro</creator><creator>Li, Debiao</creator><creator>Wang, Ge</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0000-0002-9824-0170</orcidid><orcidid>https://orcid.org/0000-0002-3911-0042</orcidid><orcidid>https://orcid.org/0000-0002-0333-567X</orcidid><orcidid>https://orcid.org/0000-0002-4393-1011</orcidid><orcidid>https://orcid.org/0000-0001-8560-8231</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid></search><sort><creationdate>20210801</creationdate><title>Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network</title><author>Lyu, Qing ; Shan, Hongming ; Xie, Yibin ; Kwan, Alan C. ; Otaki, Yuka ; Kuronuma, Keiichiro ; Li, Debiao ; Wang, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e9a63ea72b8713aa4d4d360b7a0d3278a66dda49047308cac45827c05f7068e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cardiac magnetic resonance imaging (MRI)</topic><topic>Computed tomography</topic><topic>Coronary artery disease</topic><topic>Deep learning</topic><topic>fast MRI</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Heart diseases</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Long short-term memory</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>motion artifact reduction</topic><topic>Motion artifacts</topic><topic>Motivation</topic><topic>Neural networks</topic><topic>recurrent neural network</topic><topic>Recurrent neural networks</topic><topic>Reduction (metal working)</topic><topic>Spatial resolution</topic><topic>Temporal resolution</topic><topic>Temporal variations</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Qing</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><creatorcontrib>Xie, Yibin</creatorcontrib><creatorcontrib>Kwan, Alan C.</creatorcontrib><creatorcontrib>Otaki, Yuka</creatorcontrib><creatorcontrib>Kuronuma, Keiichiro</creatorcontrib><creatorcontrib>Li, Debiao</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lyu, Qing</au><au>Shan, Hongming</au><au>Xie, Yibin</au><au>Kwan, Alan C.</au><au>Otaki, Yuka</au><au>Kuronuma, Keiichiro</au><au>Li, Debiao</au><au>Wang, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>40</volume><issue>8</issue><spage>2170</spage><epage>2181</epage><pages>2170-2181</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Cine cardiac magnetic resonance imaging (MRI) is widely used for the diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a novel recurrent generative adversarial network model for cardiac MRI motion artifact reduction. This model utilizes bi-directional convolutional long short-term memory (ConvLSTM) and multi-scale convolutions to improve the performance of the proposed network, in which bi-directional ConvLSTMs handle long-range temporal features while multi-scale convolutions gather both local and global features. We demonstrate a decent generalizability of the proposed method thanks to the novel architecture of our deep network that captures the essential relationship of cardiovascular dynamics. Indeed, our extensive experiments show that our method achieves better image quality for cine cardiac MRI images than existing state-of-the-art methods. In addition, our method can generate reliable missing intermediate frames based on their adjacent frames, improving the temporal resolution of cine cardiac MRI sequences.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33856986</pmid><doi>10.1109/TMI.2021.3073381</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0000-0002-9824-0170</orcidid><orcidid>https://orcid.org/0000-0002-3911-0042</orcidid><orcidid>https://orcid.org/0000-0002-0333-567X</orcidid><orcidid>https://orcid.org/0000-0002-4393-1011</orcidid><orcidid>https://orcid.org/0000-0001-8560-8231</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2021-08, Vol.40 (8), p.2170-2181
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmed_primary_33856986
source IEEE Electronic Library (IEL)
subjects Cardiac magnetic resonance imaging (MRI)
Computed tomography
Coronary artery disease
Deep learning
fast MRI
Feature extraction
Generative adversarial networks
Heart diseases
Image quality
Image reconstruction
Image resolution
Long short-term memory
Magnetic resonance imaging
Medical imaging
motion artifact reduction
Motion artifacts
Motivation
Neural networks
recurrent neural network
Recurrent neural networks
Reduction (metal working)
Spatial resolution
Temporal resolution
Temporal variations
title Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cine%20Cardiac%20MRI%20Motion%20Artifact%20Reduction%20Using%20a%20Recurrent%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Lyu,%20Qing&rft.date=2021-08-01&rft.volume=40&rft.issue=8&rft.spage=2170&rft.epage=2181&rft.pages=2170-2181&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3073381&rft_dat=%3Cproquest_RIE%3E2556486540%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556486540&rft_id=info:pmid/33856986&rft_ieee_id=9405626&rfr_iscdi=true