Calculation of self-diffusion coefficients in supercritical carbon dioxide using mean force kinetic theory
This paper presents an application of mean force kinetic theory (MFT) to the calculation of the self-diffusivity of CO2 in the supercritical fluid regime. Two modifications to the typical application of MFT are employed to allow its application to a system of molecular species. The first is the assu...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-04, Vol.154 (13), p.134101-134101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134101 |
---|---|
container_issue | 13 |
container_start_page | 134101 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Scheiner, Brett Yoon, Tae Jun |
description | This paper presents an application of mean force kinetic theory (MFT) to the calculation of the self-diffusivity of CO2 in the supercritical fluid regime. Two modifications to the typical application of MFT are employed to allow its application to a system of molecular species. The first is the assumption that the inter-particle potential of mean force can be obtained from the molecule center-of-mass pair correlation function, which in the case of CO2 is the C–C pair correlation function. The second is a new definition of the Enskog factor that describes the effect of correlations at the surface of the collision volume. The new definition retains the physical picture that this quantity represents a local density increase, resulting from particle correlations, relative to that in the zero density homogeneous fluid limit. These calculations are facilitated by the calculation of pair correlation functions from molecular dynamics (MD) simulations using the FEPM2 molecular CO2 model. The self-diffusivity calculated from theory is in good agreement with that from MD simulations up to and slightly beyond the density at the location of the Frenkel line. The calculation is compared with and is found to perform similarly well to other commonly used models but has a greater potential for application to systems of mixed species and to systems of particles with long range interatomic potentials due to electrostatic interactions. |
doi_str_mv | 10.1063/5.0045211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33832259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511238741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-285dba61d867417f088b14dd6980f450b7cb25edd4ec165e2ac56bcaf96e121b3</originalsourceid><addsrcrecordid>eNp90U9rFDEYBvAgit1WD34BCXpRYWr-TDKZY1msFQq91HPIJG9s1tlkTTJiv71Zd1UQ6ikQfnl4woPQC0rOKZH8vTgnpBeM0kdoRYkau0GO5DFaEcJoN0oiT9BpKRtCCB1Y_xSdcK44Y2Jcoc3azHaZTQ0p4uRxgdl3Lni_lP2NTeB9sAFiLThEXJYdZJtDDdbM2Jo8NeRC-hEc4PYkfsFbMBH7lC3gryFCk7jeQcr3z9ATb-YCz4_nGfp8-eF2fdVd33z8tL647qygtHZMCTcZSZ2SQ08HT5SaaO-cHBXxvSDTYCcmwLkeLJUCmLFCTtb4UQJldOJn6NUhN5UadLGhgr2zKUawVVPF5TiODb05oF1O3xYoVW9DsTDPJkJaimatC-OqNWj09T90k5Yc2xeaIsOgBFeqqbcHZXMqJYPXuxy2Jt9rSvR-JS30caVmXx4Tl2kL7o_8PUsD7w5g3_7XNv9NexB_T_kv1Dvn-U-h1KiO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507785388</pqid></control><display><type>article</type><title>Calculation of self-diffusion coefficients in supercritical carbon dioxide using mean force kinetic theory</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Scheiner, Brett ; Yoon, Tae Jun</creator><creatorcontrib>Scheiner, Brett ; Yoon, Tae Jun ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>This paper presents an application of mean force kinetic theory (MFT) to the calculation of the self-diffusivity of CO2 in the supercritical fluid regime. Two modifications to the typical application of MFT are employed to allow its application to a system of molecular species. The first is the assumption that the inter-particle potential of mean force can be obtained from the molecule center-of-mass pair correlation function, which in the case of CO2 is the C–C pair correlation function. The second is a new definition of the Enskog factor that describes the effect of correlations at the surface of the collision volume. The new definition retains the physical picture that this quantity represents a local density increase, resulting from particle correlations, relative to that in the zero density homogeneous fluid limit. These calculations are facilitated by the calculation of pair correlation functions from molecular dynamics (MD) simulations using the FEPM2 molecular CO2 model. The self-diffusivity calculated from theory is in good agreement with that from MD simulations up to and slightly beyond the density at the location of the Frenkel line. The calculation is compared with and is found to perform similarly well to other commonly used models but has a greater potential for application to systems of mixed species and to systems of particles with long range interatomic potentials due to electrostatic interactions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0045211</identifier><identifier>PMID: 33832259</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Carbon dioxide ; Classical statistical mechanics ; Correlation ; Density ; Diffusion ; Diffusivity ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Kinetic theory ; Molecular dynamics ; Nonequilibrium statistical mechanics ; Particle correlations ; Self diffusion ; Supercritical fluids</subject><ispartof>The Journal of chemical physics, 2021-04, Vol.154 (13), p.134101-134101</ispartof><rights>U.S. Government</rights><rights>2021U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-285dba61d867417f088b14dd6980f450b7cb25edd4ec165e2ac56bcaf96e121b3</citedby><cites>FETCH-LOGICAL-c511t-285dba61d867417f088b14dd6980f450b7cb25edd4ec165e2ac56bcaf96e121b3</cites><orcidid>0000-0001-6002-9129 ; 0000-0003-4529-3903 ; 0000000345293903 ; 0000000160029129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0045211$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33832259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1836999$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheiner, Brett</creatorcontrib><creatorcontrib>Yoon, Tae Jun</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Calculation of self-diffusion coefficients in supercritical carbon dioxide using mean force kinetic theory</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>This paper presents an application of mean force kinetic theory (MFT) to the calculation of the self-diffusivity of CO2 in the supercritical fluid regime. Two modifications to the typical application of MFT are employed to allow its application to a system of molecular species. The first is the assumption that the inter-particle potential of mean force can be obtained from the molecule center-of-mass pair correlation function, which in the case of CO2 is the C–C pair correlation function. The second is a new definition of the Enskog factor that describes the effect of correlations at the surface of the collision volume. The new definition retains the physical picture that this quantity represents a local density increase, resulting from particle correlations, relative to that in the zero density homogeneous fluid limit. These calculations are facilitated by the calculation of pair correlation functions from molecular dynamics (MD) simulations using the FEPM2 molecular CO2 model. The self-diffusivity calculated from theory is in good agreement with that from MD simulations up to and slightly beyond the density at the location of the Frenkel line. The calculation is compared with and is found to perform similarly well to other commonly used models but has a greater potential for application to systems of mixed species and to systems of particles with long range interatomic potentials due to electrostatic interactions.</description><subject>Carbon dioxide</subject><subject>Classical statistical mechanics</subject><subject>Correlation</subject><subject>Density</subject><subject>Diffusion</subject><subject>Diffusivity</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Kinetic theory</subject><subject>Molecular dynamics</subject><subject>Nonequilibrium statistical mechanics</subject><subject>Particle correlations</subject><subject>Self diffusion</subject><subject>Supercritical fluids</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90U9rFDEYBvAgit1WD34BCXpRYWr-TDKZY1msFQq91HPIJG9s1tlkTTJiv71Zd1UQ6ikQfnl4woPQC0rOKZH8vTgnpBeM0kdoRYkau0GO5DFaEcJoN0oiT9BpKRtCCB1Y_xSdcK44Y2Jcoc3azHaZTQ0p4uRxgdl3Lni_lP2NTeB9sAFiLThEXJYdZJtDDdbM2Jo8NeRC-hEc4PYkfsFbMBH7lC3gryFCk7jeQcr3z9ATb-YCz4_nGfp8-eF2fdVd33z8tL647qygtHZMCTcZSZ2SQ08HT5SaaO-cHBXxvSDTYCcmwLkeLJUCmLFCTtb4UQJldOJn6NUhN5UadLGhgr2zKUawVVPF5TiODb05oF1O3xYoVW9DsTDPJkJaimatC-OqNWj09T90k5Yc2xeaIsOgBFeqqbcHZXMqJYPXuxy2Jt9rSvR-JS30caVmXx4Tl2kL7o_8PUsD7w5g3_7XNv9NexB_T_kv1Dvn-U-h1KiO</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Scheiner, Brett</creator><creator>Yoon, Tae Jun</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6002-9129</orcidid><orcidid>https://orcid.org/0000-0003-4529-3903</orcidid><orcidid>https://orcid.org/0000000345293903</orcidid><orcidid>https://orcid.org/0000000160029129</orcidid></search><sort><creationdate>20210407</creationdate><title>Calculation of self-diffusion coefficients in supercritical carbon dioxide using mean force kinetic theory</title><author>Scheiner, Brett ; Yoon, Tae Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-285dba61d867417f088b14dd6980f450b7cb25edd4ec165e2ac56bcaf96e121b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Classical statistical mechanics</topic><topic>Correlation</topic><topic>Density</topic><topic>Diffusion</topic><topic>Diffusivity</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Kinetic theory</topic><topic>Molecular dynamics</topic><topic>Nonequilibrium statistical mechanics</topic><topic>Particle correlations</topic><topic>Self diffusion</topic><topic>Supercritical fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheiner, Brett</creatorcontrib><creatorcontrib>Yoon, Tae Jun</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheiner, Brett</au><au>Yoon, Tae Jun</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of self-diffusion coefficients in supercritical carbon dioxide using mean force kinetic theory</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>154</volume><issue>13</issue><spage>134101</spage><epage>134101</epage><pages>134101-134101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>This paper presents an application of mean force kinetic theory (MFT) to the calculation of the self-diffusivity of CO2 in the supercritical fluid regime. Two modifications to the typical application of MFT are employed to allow its application to a system of molecular species. The first is the assumption that the inter-particle potential of mean force can be obtained from the molecule center-of-mass pair correlation function, which in the case of CO2 is the C–C pair correlation function. The second is a new definition of the Enskog factor that describes the effect of correlations at the surface of the collision volume. The new definition retains the physical picture that this quantity represents a local density increase, resulting from particle correlations, relative to that in the zero density homogeneous fluid limit. These calculations are facilitated by the calculation of pair correlation functions from molecular dynamics (MD) simulations using the FEPM2 molecular CO2 model. The self-diffusivity calculated from theory is in good agreement with that from MD simulations up to and slightly beyond the density at the location of the Frenkel line. The calculation is compared with and is found to perform similarly well to other commonly used models but has a greater potential for application to systems of mixed species and to systems of particles with long range interatomic potentials due to electrostatic interactions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33832259</pmid><doi>10.1063/5.0045211</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6002-9129</orcidid><orcidid>https://orcid.org/0000-0003-4529-3903</orcidid><orcidid>https://orcid.org/0000000345293903</orcidid><orcidid>https://orcid.org/0000000160029129</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-04, Vol.154 (13), p.134101-134101 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_33832259 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Carbon dioxide Classical statistical mechanics Correlation Density Diffusion Diffusivity INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Kinetic theory Molecular dynamics Nonequilibrium statistical mechanics Particle correlations Self diffusion Supercritical fluids |
title | Calculation of self-diffusion coefficients in supercritical carbon dioxide using mean force kinetic theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20self-diffusion%20coefficients%20in%20supercritical%20carbon%20dioxide%20using%20mean%20force%20kinetic%20theory&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Scheiner,%20Brett&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-04-07&rft.volume=154&rft.issue=13&rft.spage=134101&rft.epage=134101&rft.pages=134101-134101&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0045211&rft_dat=%3Cproquest_pubme%3E2511238741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507785388&rft_id=info:pmid/33832259&rfr_iscdi=true |