Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs

Human spinal balance assessment relies considerably on sagittal radiographic parameter measurement. Deep learning could be applied for automatic landmark detection and alignment analysis, with mild to moderate standard errors and favourable correlations with manual measurement. In this study, based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-04, Vol.11 (1), p.7618-7618, Article 7618
Hauptverfasser: Yeh, Yu-Cheng, Weng, Chi-Hung, Huang, Yu-Jui, Fu, Chen-Ju, Tsai, Tsung-Ting, Yeh, Chao-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human spinal balance assessment relies considerably on sagittal radiographic parameter measurement. Deep learning could be applied for automatic landmark detection and alignment analysis, with mild to moderate standard errors and favourable correlations with manual measurement. In this study, based on 2210 annotated images of various spinal disease aetiologies, we developed deep learning models capable of automatically locating 45 anatomic landmarks and subsequently generating 18 radiographic parameters on a whole-spine lateral radiograph. In the assessment of model performance, the localisation accuracy and learning speed were the highest for landmarks in the cervical area, followed by those in the lumbosacral, thoracic, and femoral areas. All the predicted radiographic parameters were significantly correlated with ground truth values (all p  
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-87141-x