Use of computer vision for analysis of image datasets from high temperature plasma experiments

Great strides have been made in improving the quality of x-ray radiographs in high energy density plasma experiments, enabled in part by innovations in engineering and manufacturing of integrated circuits and materials. As a consequence, the radiographs of today are filled with a great deal of detai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-03, Vol.92 (3), p.033532-033532
Hauptverfasser: Kozlowski, P. M., Kim, Y., Haines, B. M., Robey, H. F., Murphy, T. J., Johns, H. M., Perry, T. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 033532
container_issue 3
container_start_page 033532
container_title Review of scientific instruments
container_volume 92
creator Kozlowski, P. M.
Kim, Y.
Haines, B. M.
Robey, H. F.
Murphy, T. J.
Johns, H. M.
Perry, T. S.
description Great strides have been made in improving the quality of x-ray radiographs in high energy density plasma experiments, enabled in part by innovations in engineering and manufacturing of integrated circuits and materials. As a consequence, the radiographs of today are filled with a great deal of detail, but few of these features are extracted in a systematic way. Analysis techniques familiar to plasma physicists tend toward brittle 1D lineout or Fourier transform type analyses. The techniques applied to process our data have not kept pace with improvements in the quality of our data. Fortunately, the field of computer vision has a wealth of tools to offer, which have been widely used in industrial imaging and, more recently, adopted in biological imaging. We demonstrate the application of computer vision techniques to the analysis of x-ray radiographs from high energy density plasma experiments, as well as give a brief tutorial on the computer vision techniques themselves. These tools robustly extract 2D contours of shocks, boundaries of inhomogeneities, and secondary flows, thereby allowing for increased automation of analysis, as well as direct and quantitative comparisons with simulations.
doi_str_mv 10.1063/5.0040285
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33820092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501337005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-3ff9fdf9e1e85775bcffcdcf8c2c2474c790344520be54874009d2b7ea8f351c3</originalsourceid><addsrcrecordid>eNp90V1rFDEUBuAgFrtWL_wDEvRGC1PzuZm5LMWPQsEbe2vIZk66KTOTMSdT7L83664VLJibQPJwcnJeQl5xdsbZWn7QZ4wpJlr9hKw4a7vGrIV8SlaMSdWsjWqPyXPEW1aX5vwZOZayFYx1YkW-XyPQFKhP47wUyPQuYkwTDSlTN7nhHiPu7uPoboD2rjiEgjTkNNJtvNnSAuMM2ZUlA50Hh6Oj8LOexBGmgi_IUXADwsvDfkKuP338dvGlufr6-fLi_KrxSunSyBC60IcOOLTaGL3xIfjeh9YLL5RR3nT1K0oLtgGtWqNq873YGHBtkJp7eULe7OsmLNGijwX81qdpAl8sN4bzrq3o3R7NOf1YAIsdI3oYBjdBWtAKXUdihOq6St_-Q2_Tkus8fisupamjrOr9XvmcEDMEO9d_u3xvObO7ZKy2h2SqfX2ouGxG6B_knygqON2DXfeu1BAezF3KfyvZuQ__w4-f_gWG5aPy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501337005</pqid></control><display><type>article</type><title>Use of computer vision for analysis of image datasets from high temperature plasma experiments</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kozlowski, P. M. ; Kim, Y. ; Haines, B. M. ; Robey, H. F. ; Murphy, T. J. ; Johns, H. M. ; Perry, T. S.</creator><creatorcontrib>Kozlowski, P. M. ; Kim, Y. ; Haines, B. M. ; Robey, H. F. ; Murphy, T. J. ; Johns, H. M. ; Perry, T. S.</creatorcontrib><description>Great strides have been made in improving the quality of x-ray radiographs in high energy density plasma experiments, enabled in part by innovations in engineering and manufacturing of integrated circuits and materials. As a consequence, the radiographs of today are filled with a great deal of detail, but few of these features are extracted in a systematic way. Analysis techniques familiar to plasma physicists tend toward brittle 1D lineout or Fourier transform type analyses. The techniques applied to process our data have not kept pace with improvements in the quality of our data. Fortunately, the field of computer vision has a wealth of tools to offer, which have been widely used in industrial imaging and, more recently, adopted in biological imaging. We demonstrate the application of computer vision techniques to the analysis of x-ray radiographs from high energy density plasma experiments, as well as give a brief tutorial on the computer vision techniques themselves. These tools robustly extract 2D contours of shocks, boundaries of inhomogeneities, and secondary flows, thereby allowing for increased automation of analysis, as well as direct and quantitative comparisons with simulations.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0040285</identifier><identifier>PMID: 33820092</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computer vision ; Experiments ; Feature extraction ; Flux density ; Fourier transforms ; High temperature plasmas ; Integrated circuits ; Physicists ; Plasma ; Radiographs ; Scientific apparatus &amp; instruments ; Secondary flow</subject><ispartof>Review of scientific instruments, 2021-03, Vol.92 (3), p.033532-033532</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-3ff9fdf9e1e85775bcffcdcf8c2c2474c790344520be54874009d2b7ea8f351c3</citedby><cites>FETCH-LOGICAL-c445t-3ff9fdf9e1e85775bcffcdcf8c2c2474c790344520be54874009d2b7ea8f351c3</cites><orcidid>0000-0001-5002-0964 ; 0000-0001-5169-8283 ; 0000-0001-7252-3343 ; 0000-0001-6849-3612 ; 0000-0002-8832-2033 ; 0000-0002-6137-9873 ; 0000-0002-3889-7074 ; 0000000238897074 ; 0000000168493612 ; 0000000172523343 ; 0000000288322033 ; 0000000150020964 ; 0000000151698283 ; 0000000261379873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0040285$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33820092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1771198$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozlowski, P. M.</creatorcontrib><creatorcontrib>Kim, Y.</creatorcontrib><creatorcontrib>Haines, B. M.</creatorcontrib><creatorcontrib>Robey, H. F.</creatorcontrib><creatorcontrib>Murphy, T. J.</creatorcontrib><creatorcontrib>Johns, H. M.</creatorcontrib><creatorcontrib>Perry, T. S.</creatorcontrib><title>Use of computer vision for analysis of image datasets from high temperature plasma experiments</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Great strides have been made in improving the quality of x-ray radiographs in high energy density plasma experiments, enabled in part by innovations in engineering and manufacturing of integrated circuits and materials. As a consequence, the radiographs of today are filled with a great deal of detail, but few of these features are extracted in a systematic way. Analysis techniques familiar to plasma physicists tend toward brittle 1D lineout or Fourier transform type analyses. The techniques applied to process our data have not kept pace with improvements in the quality of our data. Fortunately, the field of computer vision has a wealth of tools to offer, which have been widely used in industrial imaging and, more recently, adopted in biological imaging. We demonstrate the application of computer vision techniques to the analysis of x-ray radiographs from high energy density plasma experiments, as well as give a brief tutorial on the computer vision techniques themselves. These tools robustly extract 2D contours of shocks, boundaries of inhomogeneities, and secondary flows, thereby allowing for increased automation of analysis, as well as direct and quantitative comparisons with simulations.</description><subject>Computer vision</subject><subject>Experiments</subject><subject>Feature extraction</subject><subject>Flux density</subject><subject>Fourier transforms</subject><subject>High temperature plasmas</subject><subject>Integrated circuits</subject><subject>Physicists</subject><subject>Plasma</subject><subject>Radiographs</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Secondary flow</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90V1rFDEUBuAgFrtWL_wDEvRGC1PzuZm5LMWPQsEbe2vIZk66KTOTMSdT7L83664VLJibQPJwcnJeQl5xdsbZWn7QZ4wpJlr9hKw4a7vGrIV8SlaMSdWsjWqPyXPEW1aX5vwZOZayFYx1YkW-XyPQFKhP47wUyPQuYkwTDSlTN7nhHiPu7uPoboD2rjiEgjTkNNJtvNnSAuMM2ZUlA50Hh6Oj8LOexBGmgi_IUXADwsvDfkKuP338dvGlufr6-fLi_KrxSunSyBC60IcOOLTaGL3xIfjeh9YLL5RR3nT1K0oLtgGtWqNq873YGHBtkJp7eULe7OsmLNGijwX81qdpAl8sN4bzrq3o3R7NOf1YAIsdI3oYBjdBWtAKXUdihOq6St_-Q2_Tkus8fisupamjrOr9XvmcEDMEO9d_u3xvObO7ZKy2h2SqfX2ouGxG6B_knygqON2DXfeu1BAezF3KfyvZuQ__w4-f_gWG5aPy</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kozlowski, P. M.</creator><creator>Kim, Y.</creator><creator>Haines, B. M.</creator><creator>Robey, H. F.</creator><creator>Murphy, T. J.</creator><creator>Johns, H. M.</creator><creator>Perry, T. S.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5002-0964</orcidid><orcidid>https://orcid.org/0000-0001-5169-8283</orcidid><orcidid>https://orcid.org/0000-0001-7252-3343</orcidid><orcidid>https://orcid.org/0000-0001-6849-3612</orcidid><orcidid>https://orcid.org/0000-0002-8832-2033</orcidid><orcidid>https://orcid.org/0000-0002-6137-9873</orcidid><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid><orcidid>https://orcid.org/0000000168493612</orcidid><orcidid>https://orcid.org/0000000172523343</orcidid><orcidid>https://orcid.org/0000000288322033</orcidid><orcidid>https://orcid.org/0000000150020964</orcidid><orcidid>https://orcid.org/0000000151698283</orcidid><orcidid>https://orcid.org/0000000261379873</orcidid></search><sort><creationdate>20210301</creationdate><title>Use of computer vision for analysis of image datasets from high temperature plasma experiments</title><author>Kozlowski, P. M. ; Kim, Y. ; Haines, B. M. ; Robey, H. F. ; Murphy, T. J. ; Johns, H. M. ; Perry, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-3ff9fdf9e1e85775bcffcdcf8c2c2474c790344520be54874009d2b7ea8f351c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer vision</topic><topic>Experiments</topic><topic>Feature extraction</topic><topic>Flux density</topic><topic>Fourier transforms</topic><topic>High temperature plasmas</topic><topic>Integrated circuits</topic><topic>Physicists</topic><topic>Plasma</topic><topic>Radiographs</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Secondary flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozlowski, P. M.</creatorcontrib><creatorcontrib>Kim, Y.</creatorcontrib><creatorcontrib>Haines, B. M.</creatorcontrib><creatorcontrib>Robey, H. F.</creatorcontrib><creatorcontrib>Murphy, T. J.</creatorcontrib><creatorcontrib>Johns, H. M.</creatorcontrib><creatorcontrib>Perry, T. S.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozlowski, P. M.</au><au>Kim, Y.</au><au>Haines, B. M.</au><au>Robey, H. F.</au><au>Murphy, T. J.</au><au>Johns, H. M.</au><au>Perry, T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of computer vision for analysis of image datasets from high temperature plasma experiments</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>92</volume><issue>3</issue><spage>033532</spage><epage>033532</epage><pages>033532-033532</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Great strides have been made in improving the quality of x-ray radiographs in high energy density plasma experiments, enabled in part by innovations in engineering and manufacturing of integrated circuits and materials. As a consequence, the radiographs of today are filled with a great deal of detail, but few of these features are extracted in a systematic way. Analysis techniques familiar to plasma physicists tend toward brittle 1D lineout or Fourier transform type analyses. The techniques applied to process our data have not kept pace with improvements in the quality of our data. Fortunately, the field of computer vision has a wealth of tools to offer, which have been widely used in industrial imaging and, more recently, adopted in biological imaging. We demonstrate the application of computer vision techniques to the analysis of x-ray radiographs from high energy density plasma experiments, as well as give a brief tutorial on the computer vision techniques themselves. These tools robustly extract 2D contours of shocks, boundaries of inhomogeneities, and secondary flows, thereby allowing for increased automation of analysis, as well as direct and quantitative comparisons with simulations.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33820092</pmid><doi>10.1063/5.0040285</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5002-0964</orcidid><orcidid>https://orcid.org/0000-0001-5169-8283</orcidid><orcidid>https://orcid.org/0000-0001-7252-3343</orcidid><orcidid>https://orcid.org/0000-0001-6849-3612</orcidid><orcidid>https://orcid.org/0000-0002-8832-2033</orcidid><orcidid>https://orcid.org/0000-0002-6137-9873</orcidid><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid><orcidid>https://orcid.org/0000000168493612</orcidid><orcidid>https://orcid.org/0000000172523343</orcidid><orcidid>https://orcid.org/0000000288322033</orcidid><orcidid>https://orcid.org/0000000150020964</orcidid><orcidid>https://orcid.org/0000000151698283</orcidid><orcidid>https://orcid.org/0000000261379873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2021-03, Vol.92 (3), p.033532-033532
issn 0034-6748
1089-7623
language eng
recordid cdi_pubmed_primary_33820092
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computer vision
Experiments
Feature extraction
Flux density
Fourier transforms
High temperature plasmas
Integrated circuits
Physicists
Plasma
Radiographs
Scientific apparatus & instruments
Secondary flow
title Use of computer vision for analysis of image datasets from high temperature plasma experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20computer%20vision%20for%20analysis%20of%20image%20datasets%20from%20high%20temperature%20plasma%20experiments&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Kozlowski,%20P.%20M.&rft.date=2021-03-01&rft.volume=92&rft.issue=3&rft.spage=033532&rft.epage=033532&rft.pages=033532-033532&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0040285&rft_dat=%3Cproquest_pubme%3E2501337005%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501337005&rft_id=info:pmid/33820092&rfr_iscdi=true