Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system

In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-03, Vol.92 (3), p.033503-033503
Hauptverfasser: Fiorucci, D., Giudicotti, L., Innocente, P., Terranova, D., Mazzotta, C., Tudisco, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 033503
container_issue 3
container_start_page 033503
container_title Review of scientific instruments
container_volume 92
creator Fiorucci, D.
Giudicotti, L.
Innocente, P.
Terranova, D.
Mazzotta, C.
Tudisco, O.
description In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile to allow feedback configuration control. This work presents an analysis of the interferometric and polarimetric signals of a multi-chord far-infrared interferometer/polarimeter for the divertor tokamak test facility, the new tokamak device currently under construction in Italy. The polarimetric signals are calculated both with approximate formulas and by solving the equation describing the evolution of the laser beam polarization inside the plasma using the Mueller formalism. The latter method correctly accounts for crosstalk between Faraday rotation and the Cotton–Mouton effect. The impact of the plasma birefringence on the interferometric phase shift is also studied, and it is found that a perturbation of the interferometric phase shift is present also in the case of an initial fixed linear polarization of the probe laser beam.
doi_str_mv 10.1063/5.0043516
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33820010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509272466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fdfefb5ecd8f18580820e1e9f62353c27c634ad5549726dfde56e288b4749fdf3</originalsourceid><addsrcrecordid>eNp9kE9PGzEQxa0K1IS0h34BZIlLQVrw__UeUQoUCYlLOFuOd9w62Y2DvUEKnx5D0laqBHOZd_jN07yH0DdKzilR_EKeEyK4pOoTGlOim6pWjB-gMSFcVKoWeoSOcl6QMpLSz2jEuWaEUDJG8-lvm6wbIIVnO4S4wtHjHH6tbJexjwlb_CM8QRqKnMWl7e0SzyAP2FsXujBscViVYw8p9lDExTp2NoU3jfM2D9B_QYe-uMHX_Z6gh-ur2fRndXd_czu9vKsc13yofOvBzyW4VnuqpSblRaDQ-JJFcsdqp7iwrZSiqZlqfQtSAdN6LmrRlGM-Qd93vusUHzflR9OH7KDr7AriJhsmScNqJpQq6Ml_6CJu0mtmw0QjVC2prgt1uqNcijkn8GZdktm0NZSY1-KNNPviC3u8d9zMe2j_kn-aLsDZDsguDG9Nf-j2LvwU0z_QrEvuF6uemkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494675187</pqid></control><display><type>article</type><title>Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fiorucci, D. ; Giudicotti, L. ; Innocente, P. ; Terranova, D. ; Mazzotta, C. ; Tudisco, O.</creator><creatorcontrib>Fiorucci, D. ; Giudicotti, L. ; Innocente, P. ; Terranova, D. ; Mazzotta, C. ; Tudisco, O.</creatorcontrib><description>In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile to allow feedback configuration control. This work presents an analysis of the interferometric and polarimetric signals of a multi-chord far-infrared interferometer/polarimeter for the divertor tokamak test facility, the new tokamak device currently under construction in Italy. The polarimetric signals are calculated both with approximate formulas and by solving the equation describing the evolution of the laser beam polarization inside the plasma using the Mueller formalism. The latter method correctly accounts for crosstalk between Faraday rotation and the Cotton–Mouton effect. The impact of the plasma birefringence on the interferometric phase shift is also studied, and it is found that a perturbation of the interferometric phase shift is present also in the case of an initial fixed linear polarization of the probe laser beam.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0043516</identifier><identifier>PMID: 33820010</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Birefringence ; Crosstalk ; Faraday effect ; Infrared interferometers ; Interferometry ; Laser beams ; Lasers ; Linear polarization ; Perturbation ; Phase shift ; Plasma ; Plasma density ; Polarimeters ; Polarimetry ; Rotating plasmas ; Scientific apparatus &amp; instruments ; Test facilities ; Tokamak devices</subject><ispartof>Review of scientific instruments, 2021-03, Vol.92 (3), p.033503-033503</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-fdfefb5ecd8f18580820e1e9f62353c27c634ad5549726dfde56e288b4749fdf3</citedby><cites>FETCH-LOGICAL-c383t-fdfefb5ecd8f18580820e1e9f62353c27c634ad5549726dfde56e288b4749fdf3</cites><orcidid>0000-0002-2115-7491 ; 0000-0002-7538-6556 ; 0000-0001-9339-283X ; 0000-0002-5111-0336 ; 0000000275386556 ; 000000019339283X ; 0000000251110336 ; 0000000221157491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0043516$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33820010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiorucci, D.</creatorcontrib><creatorcontrib>Giudicotti, L.</creatorcontrib><creatorcontrib>Innocente, P.</creatorcontrib><creatorcontrib>Terranova, D.</creatorcontrib><creatorcontrib>Mazzotta, C.</creatorcontrib><creatorcontrib>Tudisco, O.</creatorcontrib><title>Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile to allow feedback configuration control. This work presents an analysis of the interferometric and polarimetric signals of a multi-chord far-infrared interferometer/polarimeter for the divertor tokamak test facility, the new tokamak device currently under construction in Italy. The polarimetric signals are calculated both with approximate formulas and by solving the equation describing the evolution of the laser beam polarization inside the plasma using the Mueller formalism. The latter method correctly accounts for crosstalk between Faraday rotation and the Cotton–Mouton effect. The impact of the plasma birefringence on the interferometric phase shift is also studied, and it is found that a perturbation of the interferometric phase shift is present also in the case of an initial fixed linear polarization of the probe laser beam.</description><subject>Birefringence</subject><subject>Crosstalk</subject><subject>Faraday effect</subject><subject>Infrared interferometers</subject><subject>Interferometry</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Linear polarization</subject><subject>Perturbation</subject><subject>Phase shift</subject><subject>Plasma</subject><subject>Plasma density</subject><subject>Polarimeters</subject><subject>Polarimetry</subject><subject>Rotating plasmas</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Test facilities</subject><subject>Tokamak devices</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PGzEQxa0K1IS0h34BZIlLQVrw__UeUQoUCYlLOFuOd9w62Y2DvUEKnx5D0laqBHOZd_jN07yH0DdKzilR_EKeEyK4pOoTGlOim6pWjB-gMSFcVKoWeoSOcl6QMpLSz2jEuWaEUDJG8-lvm6wbIIVnO4S4wtHjHH6tbJexjwlb_CM8QRqKnMWl7e0SzyAP2FsXujBscViVYw8p9lDExTp2NoU3jfM2D9B_QYe-uMHX_Z6gh-ur2fRndXd_czu9vKsc13yofOvBzyW4VnuqpSblRaDQ-JJFcsdqp7iwrZSiqZlqfQtSAdN6LmrRlGM-Qd93vusUHzflR9OH7KDr7AriJhsmScNqJpQq6Ml_6CJu0mtmw0QjVC2prgt1uqNcijkn8GZdktm0NZSY1-KNNPviC3u8d9zMe2j_kn-aLsDZDsguDG9Nf-j2LvwU0z_QrEvuF6uemkU</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Fiorucci, D.</creator><creator>Giudicotti, L.</creator><creator>Innocente, P.</creator><creator>Terranova, D.</creator><creator>Mazzotta, C.</creator><creator>Tudisco, O.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2115-7491</orcidid><orcidid>https://orcid.org/0000-0002-7538-6556</orcidid><orcidid>https://orcid.org/0000-0001-9339-283X</orcidid><orcidid>https://orcid.org/0000-0002-5111-0336</orcidid><orcidid>https://orcid.org/0000000275386556</orcidid><orcidid>https://orcid.org/000000019339283X</orcidid><orcidid>https://orcid.org/0000000251110336</orcidid><orcidid>https://orcid.org/0000000221157491</orcidid></search><sort><creationdate>20210301</creationdate><title>Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system</title><author>Fiorucci, D. ; Giudicotti, L. ; Innocente, P. ; Terranova, D. ; Mazzotta, C. ; Tudisco, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fdfefb5ecd8f18580820e1e9f62353c27c634ad5549726dfde56e288b4749fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Birefringence</topic><topic>Crosstalk</topic><topic>Faraday effect</topic><topic>Infrared interferometers</topic><topic>Interferometry</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Linear polarization</topic><topic>Perturbation</topic><topic>Phase shift</topic><topic>Plasma</topic><topic>Plasma density</topic><topic>Polarimeters</topic><topic>Polarimetry</topic><topic>Rotating plasmas</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Test facilities</topic><topic>Tokamak devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiorucci, D.</creatorcontrib><creatorcontrib>Giudicotti, L.</creatorcontrib><creatorcontrib>Innocente, P.</creatorcontrib><creatorcontrib>Terranova, D.</creatorcontrib><creatorcontrib>Mazzotta, C.</creatorcontrib><creatorcontrib>Tudisco, O.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiorucci, D.</au><au>Giudicotti, L.</au><au>Innocente, P.</au><au>Terranova, D.</au><au>Mazzotta, C.</au><au>Tudisco, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>92</volume><issue>3</issue><spage>033503</spage><epage>033503</epage><pages>033503-033503</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile to allow feedback configuration control. This work presents an analysis of the interferometric and polarimetric signals of a multi-chord far-infrared interferometer/polarimeter for the divertor tokamak test facility, the new tokamak device currently under construction in Italy. The polarimetric signals are calculated both with approximate formulas and by solving the equation describing the evolution of the laser beam polarization inside the plasma using the Mueller formalism. The latter method correctly accounts for crosstalk between Faraday rotation and the Cotton–Mouton effect. The impact of the plasma birefringence on the interferometric phase shift is also studied, and it is found that a perturbation of the interferometric phase shift is present also in the case of an initial fixed linear polarization of the probe laser beam.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33820010</pmid><doi>10.1063/5.0043516</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2115-7491</orcidid><orcidid>https://orcid.org/0000-0002-7538-6556</orcidid><orcidid>https://orcid.org/0000-0001-9339-283X</orcidid><orcidid>https://orcid.org/0000-0002-5111-0336</orcidid><orcidid>https://orcid.org/0000000275386556</orcidid><orcidid>https://orcid.org/000000019339283X</orcidid><orcidid>https://orcid.org/0000000251110336</orcidid><orcidid>https://orcid.org/0000000221157491</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2021-03, Vol.92 (3), p.033503-033503
issn 0034-6748
1089-7623
language eng
recordid cdi_pubmed_primary_33820010
source AIP Journals Complete; Alma/SFX Local Collection
subjects Birefringence
Crosstalk
Faraday effect
Infrared interferometers
Interferometry
Laser beams
Lasers
Linear polarization
Perturbation
Phase shift
Plasma
Plasma density
Polarimeters
Polarimetry
Rotating plasmas
Scientific apparatus & instruments
Test facilities
Tokamak devices
title Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20signals%20for%20a%20Divertor%20Tokamak%20Test%20facility%20interferometer/polarimeter%20system&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Fiorucci,%20D.&rft.date=2021-03-01&rft.volume=92&rft.issue=3&rft.spage=033503&rft.epage=033503&rft.pages=033503-033503&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0043516&rft_dat=%3Cproquest_pubme%3E2509272466%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494675187&rft_id=info:pmid/33820010&rfr_iscdi=true