Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling

Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-03, Vol.22 (6), p.2936, Article 2936
Hauptverfasser: Huque, A. K. M. Mahmudul, So, Wonmi, Noh, Minsoo, You, Min Kyoung, Shin, Jeong Sheop
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 2936
container_title International journal of molecular sciences
container_volume 22
creator Huque, A. K. M. Mahmudul
So, Wonmi
Noh, Minsoo
You, Min Kyoung
Shin, Jeong Sheop
description Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.
doi_str_mv 10.3390/ijms22062936
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33805821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4770dc37f4fa45b192fb65a1f749ba5c</doaj_id><sourcerecordid>2508564214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-e9f37810d8492ec09a4f5c0e6a5921d6ac0996ad4047887d27146271aab5bd3</originalsourceid><addsrcrecordid>eNqNksFuEzEQhlcIREvhxhlZ4oJEArbX3l1fkJI0lEqFSqT3ldc73jja2MH2FvJUvCJOU6KEExd7NP7mH8_oz7LXBH_Ic4E_mtU6UIoLKvLiSXZOGKVjjIvy6VF8lr0IYYUxzSkXz7OzPK8wryg5z37f3oOHXxsPIRhnkdNoEqfTSzJCEy8b07pNMAFNjR6siomQPfo2qB5kgBGaOavBB3Tp3dAtI7pzPXhpFaBmi-Z2mUJjOxSXgOYnPb5DN_QyOr9FV2AhIGPRZDoZf4XWyAjtQXERd1VoYbrUOWm9zJ5p2Qd49XhfZIvP87vZl_HN7dX1bHIzVqys4hiEzsuK4LZigoLCQjLNFYZCckFJW8iUEoVsGU54Vba0JKxIh5QNb9r8Irveq7ZOruqNN2vpt7WTpn5ION_V0keT1lCzssStykvNtGS8IYLqpuCS6JKJRnKVtD7ttTZDs4ZWgY1e9ieipy_WLOvO3dcVxqTIiyTw7lHAux8DhFivTVDQ99KCG0JNOa54wShhCX37D7pyg0-be6AoJ5gKkajRnlLeheBBHz5DcL3zVH3sqYS_OR7gAP81UQKqPfATGqeDMpAccMBwMiDjJa7SPGmimYly56OZG2xMpe__vzT_A8XU6rI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502510299</pqid></control><display><type>article</type><title>Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Huque, A. K. M. Mahmudul ; So, Wonmi ; Noh, Minsoo ; You, Min Kyoung ; Shin, Jeong Sheop</creator><creatorcontrib>Huque, A. K. M. Mahmudul ; So, Wonmi ; Noh, Minsoo ; You, Min Kyoung ; Shin, Jeong Sheop</creatorcontrib><description>Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22062936</identifier><identifier>PMID: 33805821</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject><![CDATA[ABA response ; Abiotic stress ; Abscisic acid ; Abscisic Acid - metabolism ; Abscisic Acid - pharmacology ; Adaptation, Physiological - genetics ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - agonists ; Arabidopsis Proteins - antagonists & inhibitors ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; AtBBD1 ; Biochemistry & Molecular Biology ; Biosynthesis ; Cell Nucleus - metabolism ; Chemistry ; Chemistry, Multidisciplinary ; Cyclopentanes - metabolism ; Cyclopentanes - pharmacology ; Cytoplasm ; Cytoplasm - metabolism ; Drought ; Drought resistance ; drought tolerance ; Droughts ; DUF151 domain ; Endonucleases - antagonists & inhibitors ; Endonucleases - genetics ; Endonucleases - metabolism ; Flowers & plants ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Germination ; Growth conditions ; Guard cells ; Isoenzymes - antagonists & inhibitors ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Kinases ; Life Sciences & Biomedicine ; Nuclease ; Oxylipins - metabolism ; Oxylipins - pharmacology ; Phenotypes ; Phosphatase ; Physical Sciences ; Physiology ; Plant Cells - drug effects ; Plant Cells - enzymology ; Plant Growth Regulators - metabolism ; Plant Growth Regulators - pharmacology ; Plant Leaves - drug effects ; Plant Leaves - enzymology ; Plant Leaves - genetics ; Plant Stomata - drug effects ; Plant Stomata - enzymology ; Plant Stomata - genetics ; Plants, Genetically Modified ; Polyethylene glycol ; Proline ; Proline - metabolism ; Proteins ; Regulation ; Regulatory proteins ; Salinity ; Science & Technology ; Seed germination ; Sequence analysis ; Signal transduction ; Stomata ; Stress, Physiological - genetics ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transpiration ; Trichomes ; Water - metabolism]]></subject><ispartof>International journal of molecular sciences, 2021-03, Vol.22 (6), p.2936, Article 2936</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000645708800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-e9f37810d8492ec09a4f5c0e6a5921d6ac0996ad4047887d27146271aab5bd3</citedby><cites>FETCH-LOGICAL-c478t-e9f37810d8492ec09a4f5c0e6a5921d6ac0996ad4047887d27146271aab5bd3</cites><orcidid>0000-0001-6631-4756 ; 0000-0002-0286-2603 ; 0000-0002-1239-3783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001636/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001636/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33805821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huque, A. K. M. Mahmudul</creatorcontrib><creatorcontrib>So, Wonmi</creatorcontrib><creatorcontrib>Noh, Minsoo</creatorcontrib><creatorcontrib>You, Min Kyoung</creatorcontrib><creatorcontrib>Shin, Jeong Sheop</creatorcontrib><title>Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.</description><subject>ABA response</subject><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Abscisic Acid - pharmacology</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - agonists</subject><subject>Arabidopsis Proteins - antagonists &amp; inhibitors</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>AtBBD1</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biosynthesis</subject><subject>Cell Nucleus - metabolism</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Cyclopentanes - metabolism</subject><subject>Cyclopentanes - pharmacology</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>drought tolerance</subject><subject>Droughts</subject><subject>DUF151 domain</subject><subject>Endonucleases - antagonists &amp; inhibitors</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Flowers &amp; plants</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Germination</subject><subject>Growth conditions</subject><subject>Guard cells</subject><subject>Isoenzymes - antagonists &amp; inhibitors</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Kinases</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Nuclease</subject><subject>Oxylipins - metabolism</subject><subject>Oxylipins - pharmacology</subject><subject>Phenotypes</subject><subject>Phosphatase</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plant Cells - drug effects</subject><subject>Plant Cells - enzymology</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Stomata - drug effects</subject><subject>Plant Stomata - enzymology</subject><subject>Plant Stomata - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Polyethylene glycol</subject><subject>Proline</subject><subject>Proline - metabolism</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Regulatory proteins</subject><subject>Salinity</subject><subject>Science &amp; Technology</subject><subject>Seed germination</subject><subject>Sequence analysis</subject><subject>Signal transduction</subject><subject>Stomata</subject><subject>Stress, Physiological - genetics</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transpiration</subject><subject>Trichomes</subject><subject>Water - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNksFuEzEQhlcIREvhxhlZ4oJEArbX3l1fkJI0lEqFSqT3ldc73jja2MH2FvJUvCJOU6KEExd7NP7mH8_oz7LXBH_Ic4E_mtU6UIoLKvLiSXZOGKVjjIvy6VF8lr0IYYUxzSkXz7OzPK8wryg5z37f3oOHXxsPIRhnkdNoEqfTSzJCEy8b07pNMAFNjR6siomQPfo2qB5kgBGaOavBB3Tp3dAtI7pzPXhpFaBmi-Z2mUJjOxSXgOYnPb5DN_QyOr9FV2AhIGPRZDoZf4XWyAjtQXERd1VoYbrUOWm9zJ5p2Qd49XhfZIvP87vZl_HN7dX1bHIzVqys4hiEzsuK4LZigoLCQjLNFYZCckFJW8iUEoVsGU54Vba0JKxIh5QNb9r8Irveq7ZOruqNN2vpt7WTpn5ION_V0keT1lCzssStykvNtGS8IYLqpuCS6JKJRnKVtD7ttTZDs4ZWgY1e9ieipy_WLOvO3dcVxqTIiyTw7lHAux8DhFivTVDQ99KCG0JNOa54wShhCX37D7pyg0-be6AoJ5gKkajRnlLeheBBHz5DcL3zVH3sqYS_OR7gAP81UQKqPfATGqeDMpAccMBwMiDjJa7SPGmimYly56OZG2xMpe__vzT_A8XU6rI</recordid><startdate>20210313</startdate><enddate>20210313</enddate><creator>Huque, A. K. M. Mahmudul</creator><creator>So, Wonmi</creator><creator>Noh, Minsoo</creator><creator>You, Min Kyoung</creator><creator>Shin, Jeong Sheop</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6631-4756</orcidid><orcidid>https://orcid.org/0000-0002-0286-2603</orcidid><orcidid>https://orcid.org/0000-0002-1239-3783</orcidid></search><sort><creationdate>20210313</creationdate><title>Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling</title><author>Huque, A. K. M. Mahmudul ; So, Wonmi ; Noh, Minsoo ; You, Min Kyoung ; Shin, Jeong Sheop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-e9f37810d8492ec09a4f5c0e6a5921d6ac0996ad4047887d27146271aab5bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ABA response</topic><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Abscisic Acid - pharmacology</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - agonists</topic><topic>Arabidopsis Proteins - antagonists &amp; inhibitors</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>AtBBD1</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biosynthesis</topic><topic>Cell Nucleus - metabolism</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Cyclopentanes - metabolism</topic><topic>Cyclopentanes - pharmacology</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>drought tolerance</topic><topic>Droughts</topic><topic>DUF151 domain</topic><topic>Endonucleases - antagonists &amp; inhibitors</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Flowers &amp; plants</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Germination</topic><topic>Growth conditions</topic><topic>Guard cells</topic><topic>Isoenzymes - antagonists &amp; inhibitors</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Kinases</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Nuclease</topic><topic>Oxylipins - metabolism</topic><topic>Oxylipins - pharmacology</topic><topic>Phenotypes</topic><topic>Phosphatase</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plant Cells - drug effects</topic><topic>Plant Cells - enzymology</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Stomata - drug effects</topic><topic>Plant Stomata - enzymology</topic><topic>Plant Stomata - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Polyethylene glycol</topic><topic>Proline</topic><topic>Proline - metabolism</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Regulatory proteins</topic><topic>Salinity</topic><topic>Science &amp; Technology</topic><topic>Seed germination</topic><topic>Sequence analysis</topic><topic>Signal transduction</topic><topic>Stomata</topic><topic>Stress, Physiological - genetics</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transpiration</topic><topic>Trichomes</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huque, A. K. M. Mahmudul</creatorcontrib><creatorcontrib>So, Wonmi</creatorcontrib><creatorcontrib>Noh, Minsoo</creatorcontrib><creatorcontrib>You, Min Kyoung</creatorcontrib><creatorcontrib>Shin, Jeong Sheop</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huque, A. K. M. Mahmudul</au><au>So, Wonmi</au><au>Noh, Minsoo</au><au>You, Min Kyoung</au><au>Shin, Jeong Sheop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2021-03-13</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><spage>2936</spage><pages>2936-</pages><artnum>2936</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33805821</pmid><doi>10.3390/ijms22062936</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6631-4756</orcidid><orcidid>https://orcid.org/0000-0002-0286-2603</orcidid><orcidid>https://orcid.org/0000-0002-1239-3783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-03, Vol.22 (6), p.2936, Article 2936
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmed_primary_33805821
source MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects ABA response
Abiotic stress
Abscisic acid
Abscisic Acid - metabolism
Abscisic Acid - pharmacology
Adaptation, Physiological - genetics
Arabidopsis - drug effects
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - agonists
Arabidopsis Proteins - antagonists & inhibitors
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
AtBBD1
Biochemistry & Molecular Biology
Biosynthesis
Cell Nucleus - metabolism
Chemistry
Chemistry, Multidisciplinary
Cyclopentanes - metabolism
Cyclopentanes - pharmacology
Cytoplasm
Cytoplasm - metabolism
Drought
Drought resistance
drought tolerance
Droughts
DUF151 domain
Endonucleases - antagonists & inhibitors
Endonucleases - genetics
Endonucleases - metabolism
Flowers & plants
Gene expression
Gene Expression Regulation, Plant
Genes
Germination
Growth conditions
Guard cells
Isoenzymes - antagonists & inhibitors
Isoenzymes - genetics
Isoenzymes - metabolism
Kinases
Life Sciences & Biomedicine
Nuclease
Oxylipins - metabolism
Oxylipins - pharmacology
Phenotypes
Phosphatase
Physical Sciences
Physiology
Plant Cells - drug effects
Plant Cells - enzymology
Plant Growth Regulators - metabolism
Plant Growth Regulators - pharmacology
Plant Leaves - drug effects
Plant Leaves - enzymology
Plant Leaves - genetics
Plant Stomata - drug effects
Plant Stomata - enzymology
Plant Stomata - genetics
Plants, Genetically Modified
Polyethylene glycol
Proline
Proline - metabolism
Proteins
Regulation
Regulatory proteins
Salinity
Science & Technology
Seed germination
Sequence analysis
Signal transduction
Stomata
Stress, Physiological - genetics
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transpiration
Trichomes
Water - metabolism
title Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20AtBBD1,%20Arabidopsis%20Bifunctional%20Nuclease,%20Confers%20Drought%20Tolerance%20by%20Enhancing%20the%20Expression%20of%20Regulatory%20Genes%20in%20ABA-Mediated%20Drought%20Stress%20Signaling&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Huque,%20A.%20K.%20M.%20Mahmudul&rft.date=2021-03-13&rft.volume=22&rft.issue=6&rft.spage=2936&rft.pages=2936-&rft.artnum=2936&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22062936&rft_dat=%3Cproquest_pubme%3E2508564214%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502510299&rft_id=info:pmid/33805821&rft_doaj_id=oai_doaj_org_article_4770dc37f4fa45b192fb65a1f749ba5c&rfr_iscdi=true