Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling
Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought s...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-03, Vol.22 (6), p.2936, Article 2936 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 2936 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Huque, A. K. M. Mahmudul So, Wonmi Noh, Minsoo You, Min Kyoung Shin, Jeong Sheop |
description | Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content. |
doi_str_mv | 10.3390/ijms22062936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33805821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4770dc37f4fa45b192fb65a1f749ba5c</doaj_id><sourcerecordid>2508564214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-e9f37810d8492ec09a4f5c0e6a5921d6ac0996ad4047887d27146271aab5bd3</originalsourceid><addsrcrecordid>eNqNksFuEzEQhlcIREvhxhlZ4oJEArbX3l1fkJI0lEqFSqT3ldc73jja2MH2FvJUvCJOU6KEExd7NP7mH8_oz7LXBH_Ic4E_mtU6UIoLKvLiSXZOGKVjjIvy6VF8lr0IYYUxzSkXz7OzPK8wryg5z37f3oOHXxsPIRhnkdNoEqfTSzJCEy8b07pNMAFNjR6siomQPfo2qB5kgBGaOavBB3Tp3dAtI7pzPXhpFaBmi-Z2mUJjOxSXgOYnPb5DN_QyOr9FV2AhIGPRZDoZf4XWyAjtQXERd1VoYbrUOWm9zJ5p2Qd49XhfZIvP87vZl_HN7dX1bHIzVqys4hiEzsuK4LZigoLCQjLNFYZCckFJW8iUEoVsGU54Vba0JKxIh5QNb9r8Irveq7ZOruqNN2vpt7WTpn5ION_V0keT1lCzssStykvNtGS8IYLqpuCS6JKJRnKVtD7ttTZDs4ZWgY1e9ieipy_WLOvO3dcVxqTIiyTw7lHAux8DhFivTVDQ99KCG0JNOa54wShhCX37D7pyg0-be6AoJ5gKkajRnlLeheBBHz5DcL3zVH3sqYS_OR7gAP81UQKqPfATGqeDMpAccMBwMiDjJa7SPGmimYly56OZG2xMpe__vzT_A8XU6rI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502510299</pqid></control><display><type>article</type><title>Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Huque, A. K. M. Mahmudul ; So, Wonmi ; Noh, Minsoo ; You, Min Kyoung ; Shin, Jeong Sheop</creator><creatorcontrib>Huque, A. K. M. Mahmudul ; So, Wonmi ; Noh, Minsoo ; You, Min Kyoung ; Shin, Jeong Sheop</creatorcontrib><description>Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22062936</identifier><identifier>PMID: 33805821</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject><![CDATA[ABA response ; Abiotic stress ; Abscisic acid ; Abscisic Acid - metabolism ; Abscisic Acid - pharmacology ; Adaptation, Physiological - genetics ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - agonists ; Arabidopsis Proteins - antagonists & inhibitors ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; AtBBD1 ; Biochemistry & Molecular Biology ; Biosynthesis ; Cell Nucleus - metabolism ; Chemistry ; Chemistry, Multidisciplinary ; Cyclopentanes - metabolism ; Cyclopentanes - pharmacology ; Cytoplasm ; Cytoplasm - metabolism ; Drought ; Drought resistance ; drought tolerance ; Droughts ; DUF151 domain ; Endonucleases - antagonists & inhibitors ; Endonucleases - genetics ; Endonucleases - metabolism ; Flowers & plants ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Germination ; Growth conditions ; Guard cells ; Isoenzymes - antagonists & inhibitors ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Kinases ; Life Sciences & Biomedicine ; Nuclease ; Oxylipins - metabolism ; Oxylipins - pharmacology ; Phenotypes ; Phosphatase ; Physical Sciences ; Physiology ; Plant Cells - drug effects ; Plant Cells - enzymology ; Plant Growth Regulators - metabolism ; Plant Growth Regulators - pharmacology ; Plant Leaves - drug effects ; Plant Leaves - enzymology ; Plant Leaves - genetics ; Plant Stomata - drug effects ; Plant Stomata - enzymology ; Plant Stomata - genetics ; Plants, Genetically Modified ; Polyethylene glycol ; Proline ; Proline - metabolism ; Proteins ; Regulation ; Regulatory proteins ; Salinity ; Science & Technology ; Seed germination ; Sequence analysis ; Signal transduction ; Stomata ; Stress, Physiological - genetics ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transpiration ; Trichomes ; Water - metabolism]]></subject><ispartof>International journal of molecular sciences, 2021-03, Vol.22 (6), p.2936, Article 2936</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000645708800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-e9f37810d8492ec09a4f5c0e6a5921d6ac0996ad4047887d27146271aab5bd3</citedby><cites>FETCH-LOGICAL-c478t-e9f37810d8492ec09a4f5c0e6a5921d6ac0996ad4047887d27146271aab5bd3</cites><orcidid>0000-0001-6631-4756 ; 0000-0002-0286-2603 ; 0000-0002-1239-3783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001636/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001636/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33805821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huque, A. K. M. Mahmudul</creatorcontrib><creatorcontrib>So, Wonmi</creatorcontrib><creatorcontrib>Noh, Minsoo</creatorcontrib><creatorcontrib>You, Min Kyoung</creatorcontrib><creatorcontrib>Shin, Jeong Sheop</creatorcontrib><title>Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.</description><subject>ABA response</subject><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Abscisic Acid - pharmacology</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - agonists</subject><subject>Arabidopsis Proteins - antagonists & inhibitors</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>AtBBD1</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biosynthesis</subject><subject>Cell Nucleus - metabolism</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Cyclopentanes - metabolism</subject><subject>Cyclopentanes - pharmacology</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>drought tolerance</subject><subject>Droughts</subject><subject>DUF151 domain</subject><subject>Endonucleases - antagonists & inhibitors</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Flowers & plants</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Germination</subject><subject>Growth conditions</subject><subject>Guard cells</subject><subject>Isoenzymes - antagonists & inhibitors</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Kinases</subject><subject>Life Sciences & Biomedicine</subject><subject>Nuclease</subject><subject>Oxylipins - metabolism</subject><subject>Oxylipins - pharmacology</subject><subject>Phenotypes</subject><subject>Phosphatase</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plant Cells - drug effects</subject><subject>Plant Cells - enzymology</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Stomata - drug effects</subject><subject>Plant Stomata - enzymology</subject><subject>Plant Stomata - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Polyethylene glycol</subject><subject>Proline</subject><subject>Proline - metabolism</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Regulatory proteins</subject><subject>Salinity</subject><subject>Science & Technology</subject><subject>Seed germination</subject><subject>Sequence analysis</subject><subject>Signal transduction</subject><subject>Stomata</subject><subject>Stress, Physiological - genetics</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transpiration</subject><subject>Trichomes</subject><subject>Water - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNksFuEzEQhlcIREvhxhlZ4oJEArbX3l1fkJI0lEqFSqT3ldc73jja2MH2FvJUvCJOU6KEExd7NP7mH8_oz7LXBH_Ic4E_mtU6UIoLKvLiSXZOGKVjjIvy6VF8lr0IYYUxzSkXz7OzPK8wryg5z37f3oOHXxsPIRhnkdNoEqfTSzJCEy8b07pNMAFNjR6siomQPfo2qB5kgBGaOavBB3Tp3dAtI7pzPXhpFaBmi-Z2mUJjOxSXgOYnPb5DN_QyOr9FV2AhIGPRZDoZf4XWyAjtQXERd1VoYbrUOWm9zJ5p2Qd49XhfZIvP87vZl_HN7dX1bHIzVqys4hiEzsuK4LZigoLCQjLNFYZCckFJW8iUEoVsGU54Vba0JKxIh5QNb9r8Irveq7ZOruqNN2vpt7WTpn5ION_V0keT1lCzssStykvNtGS8IYLqpuCS6JKJRnKVtD7ttTZDs4ZWgY1e9ieipy_WLOvO3dcVxqTIiyTw7lHAux8DhFivTVDQ99KCG0JNOa54wShhCX37D7pyg0-be6AoJ5gKkajRnlLeheBBHz5DcL3zVH3sqYS_OR7gAP81UQKqPfATGqeDMpAccMBwMiDjJa7SPGmimYly56OZG2xMpe__vzT_A8XU6rI</recordid><startdate>20210313</startdate><enddate>20210313</enddate><creator>Huque, A. K. M. Mahmudul</creator><creator>So, Wonmi</creator><creator>Noh, Minsoo</creator><creator>You, Min Kyoung</creator><creator>Shin, Jeong Sheop</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6631-4756</orcidid><orcidid>https://orcid.org/0000-0002-0286-2603</orcidid><orcidid>https://orcid.org/0000-0002-1239-3783</orcidid></search><sort><creationdate>20210313</creationdate><title>Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling</title><author>Huque, A. K. M. Mahmudul ; So, Wonmi ; Noh, Minsoo ; You, Min Kyoung ; Shin, Jeong Sheop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-e9f37810d8492ec09a4f5c0e6a5921d6ac0996ad4047887d27146271aab5bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ABA response</topic><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Abscisic Acid - pharmacology</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - agonists</topic><topic>Arabidopsis Proteins - antagonists & inhibitors</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>AtBBD1</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biosynthesis</topic><topic>Cell Nucleus - metabolism</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Cyclopentanes - metabolism</topic><topic>Cyclopentanes - pharmacology</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>drought tolerance</topic><topic>Droughts</topic><topic>DUF151 domain</topic><topic>Endonucleases - antagonists & inhibitors</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Flowers & plants</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Germination</topic><topic>Growth conditions</topic><topic>Guard cells</topic><topic>Isoenzymes - antagonists & inhibitors</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Kinases</topic><topic>Life Sciences & Biomedicine</topic><topic>Nuclease</topic><topic>Oxylipins - metabolism</topic><topic>Oxylipins - pharmacology</topic><topic>Phenotypes</topic><topic>Phosphatase</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plant Cells - drug effects</topic><topic>Plant Cells - enzymology</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Stomata - drug effects</topic><topic>Plant Stomata - enzymology</topic><topic>Plant Stomata - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Polyethylene glycol</topic><topic>Proline</topic><topic>Proline - metabolism</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Regulatory proteins</topic><topic>Salinity</topic><topic>Science & Technology</topic><topic>Seed germination</topic><topic>Sequence analysis</topic><topic>Signal transduction</topic><topic>Stomata</topic><topic>Stress, Physiological - genetics</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transpiration</topic><topic>Trichomes</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huque, A. K. M. Mahmudul</creatorcontrib><creatorcontrib>So, Wonmi</creatorcontrib><creatorcontrib>Noh, Minsoo</creatorcontrib><creatorcontrib>You, Min Kyoung</creatorcontrib><creatorcontrib>Shin, Jeong Sheop</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huque, A. K. M. Mahmudul</au><au>So, Wonmi</au><au>Noh, Minsoo</au><au>You, Min Kyoung</au><au>Shin, Jeong Sheop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2021-03-13</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><spage>2936</spage><pages>2936-</pages><artnum>2936</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33805821</pmid><doi>10.3390/ijms22062936</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6631-4756</orcidid><orcidid>https://orcid.org/0000-0002-0286-2603</orcidid><orcidid>https://orcid.org/0000-0002-1239-3783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-03, Vol.22 (6), p.2936, Article 2936 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmed_primary_33805821 |
source | MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | ABA response Abiotic stress Abscisic acid Abscisic Acid - metabolism Abscisic Acid - pharmacology Adaptation, Physiological - genetics Arabidopsis - drug effects Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - agonists Arabidopsis Proteins - antagonists & inhibitors Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana AtBBD1 Biochemistry & Molecular Biology Biosynthesis Cell Nucleus - metabolism Chemistry Chemistry, Multidisciplinary Cyclopentanes - metabolism Cyclopentanes - pharmacology Cytoplasm Cytoplasm - metabolism Drought Drought resistance drought tolerance Droughts DUF151 domain Endonucleases - antagonists & inhibitors Endonucleases - genetics Endonucleases - metabolism Flowers & plants Gene expression Gene Expression Regulation, Plant Genes Germination Growth conditions Guard cells Isoenzymes - antagonists & inhibitors Isoenzymes - genetics Isoenzymes - metabolism Kinases Life Sciences & Biomedicine Nuclease Oxylipins - metabolism Oxylipins - pharmacology Phenotypes Phosphatase Physical Sciences Physiology Plant Cells - drug effects Plant Cells - enzymology Plant Growth Regulators - metabolism Plant Growth Regulators - pharmacology Plant Leaves - drug effects Plant Leaves - enzymology Plant Leaves - genetics Plant Stomata - drug effects Plant Stomata - enzymology Plant Stomata - genetics Plants, Genetically Modified Polyethylene glycol Proline Proline - metabolism Proteins Regulation Regulatory proteins Salinity Science & Technology Seed germination Sequence analysis Signal transduction Stomata Stress, Physiological - genetics Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transpiration Trichomes Water - metabolism |
title | Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20AtBBD1,%20Arabidopsis%20Bifunctional%20Nuclease,%20Confers%20Drought%20Tolerance%20by%20Enhancing%20the%20Expression%20of%20Regulatory%20Genes%20in%20ABA-Mediated%20Drought%20Stress%20Signaling&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Huque,%20A.%20K.%20M.%20Mahmudul&rft.date=2021-03-13&rft.volume=22&rft.issue=6&rft.spage=2936&rft.pages=2936-&rft.artnum=2936&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22062936&rft_dat=%3Cproquest_pubme%3E2508564214%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502510299&rft_id=info:pmid/33805821&rft_doaj_id=oai_doaj_org_article_4770dc37f4fa45b192fb65a1f749ba5c&rfr_iscdi=true |