A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos
Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This arti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2021-07, Vol.68 (7), p.2460-2471 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2471 |
---|---|
container_issue | 7 |
container_start_page | 2460 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 68 |
creator | Qiu, Ziming Xu, Tongda Langerman, Jack Das, William Wang, Chuiyu Nair, Nitin Aristizabal, Orlando Mamou, Jonathan Turnbull, Daniel H. Ketterling, Jeffrey A. Wang, Yao |
description | Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This article proposes an accurate, efficient and explainable deep learning pipeline for automatic segmentation and classification of the BV and body. For segmentation, a two-stage framework is implemented. The first stage produces a low-resolution segmentation map, which is then used to crop a region of interest (ROI) around the target object and serve as the probability map of the autocontext input for the second-stage fine-resolution refinement network. The segmentation then becomes tractable on high-resolution 3-D images without time-consuming sliding windows. The proposed segmentation method significantly reduces inference time (102.36-0.09 s/volume \approx 1000\times faster) while maintaining high accuracy comparable to previous sliding-window approaches. Based on the BV and body segmentation map, a volumetric convolutional neural network (CNN) is trained to perform a mutant classification task. Through backpropagating the gradients of the predictions to the input BV and body segmentation map, the trained classifier is found to largely focus on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest itself. This suggests that gradient backpropagation of deep learning classifiers may provide a powerful tool for automatically detecting unknown phenotypes associated with a known genetic mutation. |
doi_str_mv | 10.1109/TUFFC.2021.3068156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_33755564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9383281</ieee_id><sourcerecordid>2546719577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-282672561ed403f9eb8b39f12f5a4b10bb98d14c9bff23fd429735e72abc7a513</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi1ERUPLHwAJWeqFAxv8ubaPUdrQSkEcaHpd2bvj1NV-BHv3EO78b5wm9NDTyONnRu_oQegjJXNKifl2v1mtlnNGGJ1zUmoqyzdoRiWThTZSvkUzorUsOKHkHL1P6YkQKoRh79A550pKWYoZ-rvA1wA7vAYb-9Bv8WK3i4OtH7EfIv4F2w760Y5h6L_iZWtTCj7Up7ftG_wQ0mTb8Oe5hQePeXGNb8P2sVhF-D1BX-_xph2jTcOU8bvObiEduB_DlADfdC7uh3SJzrxtE3w41Qu0Wd3cL2-L9c_vd8vFuqi5kWPBNCsVkyWFRhDuDTjtuPGUeWmFo8Q5oxsqauO8Z9w3ghnFJShmXa2spPwCfTnuzTfmcGmsupBqaFvbQ85TMUmEUpJwndGrV-jTMMU-p8uUKBU1UqlMsSNVxyGlCL7axdDZuK8oqQ6SqmdJ1UFSdZKUhz6fVk-ug-Zl5L-VDHw6AgEAXr5NTsU05f8AGa-Vwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546719577</pqid></control><display><type>article</type><title>A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Ziming ; Xu, Tongda ; Langerman, Jack ; Das, William ; Wang, Chuiyu ; Nair, Nitin ; Aristizabal, Orlando ; Mamou, Jonathan ; Turnbull, Daniel H. ; Ketterling, Jeffrey A. ; Wang, Yao</creator><creatorcontrib>Qiu, Ziming ; Xu, Tongda ; Langerman, Jack ; Das, William ; Wang, Chuiyu ; Nair, Nitin ; Aristizabal, Orlando ; Mamou, Jonathan ; Turnbull, Daniel H. ; Ketterling, Jeffrey A. ; Wang, Yao</creatorcontrib><description>Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This article proposes an accurate, efficient and explainable deep learning pipeline for automatic segmentation and classification of the BV and body. For segmentation, a two-stage framework is implemented. The first stage produces a low-resolution segmentation map, which is then used to crop a region of interest (ROI) around the target object and serve as the probability map of the autocontext input for the second-stage fine-resolution refinement network. The segmentation then becomes tractable on high-resolution 3-D images without time-consuming sliding windows. The proposed segmentation method significantly reduces inference time (102.36-0.09 s/volume<inline-formula> <tex-math notation="LaTeX">\approx 1000\times </tex-math></inline-formula> faster) while maintaining high accuracy comparable to previous sliding-window approaches. Based on the BV and body segmentation map, a volumetric convolutional neural network (CNN) is trained to perform a mutant classification task. Through backpropagating the gradients of the predictions to the input BV and body segmentation map, the trained classifier is found to largely focus on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest itself. This suggests that gradient backpropagation of deep learning classifiers may provide a powerful tool for automatically detecting unknown phenotypes associated with a known genetic mutation.</description><identifier>ISSN: 0885-3010</identifier><identifier>ISSN: 1525-8955</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2021.3068156</identifier><identifier>PMID: 33755564</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Artificial neural networks ; Back propagation ; Back propagation networks ; Biomedical imaging ; Classification ; Classification and visualization ; Classifiers ; Deep Learning ; Embryo ; Embryos ; high-frequency ultrasound (HFU) ; Image classification ; Image Processing, Computer-Assisted ; Image resolution ; Image segmentation ; Imaging, Three-Dimensional ; Location awareness ; Machine learning ; Mice ; mouse embryo ; Mutation ; Neural Networks, Computer ; Sliding ; Three-dimensional displays ; Ultrasonic imaging ; Ultrasonography ; Windows (intervals)</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-07, Vol.68 (7), p.2460-2471</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-282672561ed403f9eb8b39f12f5a4b10bb98d14c9bff23fd429735e72abc7a513</citedby><cites>FETCH-LOGICAL-c395t-282672561ed403f9eb8b39f12f5a4b10bb98d14c9bff23fd429735e72abc7a513</cites><orcidid>0000-0002-1389-7756 ; 0000-0002-9412-165X ; 0000-0001-8675-7343 ; 0000-0002-5328-0443 ; 0000-0003-3199-3802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9383281$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9383281$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33755564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Ziming</creatorcontrib><creatorcontrib>Xu, Tongda</creatorcontrib><creatorcontrib>Langerman, Jack</creatorcontrib><creatorcontrib>Das, William</creatorcontrib><creatorcontrib>Wang, Chuiyu</creatorcontrib><creatorcontrib>Nair, Nitin</creatorcontrib><creatorcontrib>Aristizabal, Orlando</creatorcontrib><creatorcontrib>Mamou, Jonathan</creatorcontrib><creatorcontrib>Turnbull, Daniel H.</creatorcontrib><creatorcontrib>Ketterling, Jeffrey A.</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><title>A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This article proposes an accurate, efficient and explainable deep learning pipeline for automatic segmentation and classification of the BV and body. For segmentation, a two-stage framework is implemented. The first stage produces a low-resolution segmentation map, which is then used to crop a region of interest (ROI) around the target object and serve as the probability map of the autocontext input for the second-stage fine-resolution refinement network. The segmentation then becomes tractable on high-resolution 3-D images without time-consuming sliding windows. The proposed segmentation method significantly reduces inference time (102.36-0.09 s/volume<inline-formula> <tex-math notation="LaTeX">\approx 1000\times </tex-math></inline-formula> faster) while maintaining high accuracy comparable to previous sliding-window approaches. Based on the BV and body segmentation map, a volumetric convolutional neural network (CNN) is trained to perform a mutant classification task. Through backpropagating the gradients of the predictions to the input BV and body segmentation map, the trained classifier is found to largely focus on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest itself. This suggests that gradient backpropagation of deep learning classifiers may provide a powerful tool for automatically detecting unknown phenotypes associated with a known genetic mutation.</description><subject>Animals</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Biomedical imaging</subject><subject>Classification</subject><subject>Classification and visualization</subject><subject>Classifiers</subject><subject>Deep Learning</subject><subject>Embryo</subject><subject>Embryos</subject><subject>high-frequency ultrasound (HFU)</subject><subject>Image classification</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>Mice</subject><subject>mouse embryo</subject><subject>Mutation</subject><subject>Neural Networks, Computer</subject><subject>Sliding</subject><subject>Three-dimensional displays</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Windows (intervals)</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1vEzEQhi1ERUPLHwAJWeqFAxv8ubaPUdrQSkEcaHpd2bvj1NV-BHv3EO78b5wm9NDTyONnRu_oQegjJXNKifl2v1mtlnNGGJ1zUmoqyzdoRiWThTZSvkUzorUsOKHkHL1P6YkQKoRh79A550pKWYoZ-rvA1wA7vAYb-9Bv8WK3i4OtH7EfIv4F2w760Y5h6L_iZWtTCj7Up7ftG_wQ0mTb8Oe5hQePeXGNb8P2sVhF-D1BX-_xph2jTcOU8bvObiEduB_DlADfdC7uh3SJzrxtE3w41Qu0Wd3cL2-L9c_vd8vFuqi5kWPBNCsVkyWFRhDuDTjtuPGUeWmFo8Q5oxsqauO8Z9w3ghnFJShmXa2spPwCfTnuzTfmcGmsupBqaFvbQ85TMUmEUpJwndGrV-jTMMU-p8uUKBU1UqlMsSNVxyGlCL7axdDZuK8oqQ6SqmdJ1UFSdZKUhz6fVk-ug-Zl5L-VDHw6AgEAXr5NTsU05f8AGa-Vwg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Qiu, Ziming</creator><creator>Xu, Tongda</creator><creator>Langerman, Jack</creator><creator>Das, William</creator><creator>Wang, Chuiyu</creator><creator>Nair, Nitin</creator><creator>Aristizabal, Orlando</creator><creator>Mamou, Jonathan</creator><creator>Turnbull, Daniel H.</creator><creator>Ketterling, Jeffrey A.</creator><creator>Wang, Yao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1389-7756</orcidid><orcidid>https://orcid.org/0000-0002-9412-165X</orcidid><orcidid>https://orcid.org/0000-0001-8675-7343</orcidid><orcidid>https://orcid.org/0000-0002-5328-0443</orcidid><orcidid>https://orcid.org/0000-0003-3199-3802</orcidid></search><sort><creationdate>20210701</creationdate><title>A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos</title><author>Qiu, Ziming ; Xu, Tongda ; Langerman, Jack ; Das, William ; Wang, Chuiyu ; Nair, Nitin ; Aristizabal, Orlando ; Mamou, Jonathan ; Turnbull, Daniel H. ; Ketterling, Jeffrey A. ; Wang, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-282672561ed403f9eb8b39f12f5a4b10bb98d14c9bff23fd429735e72abc7a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Biomedical imaging</topic><topic>Classification</topic><topic>Classification and visualization</topic><topic>Classifiers</topic><topic>Deep Learning</topic><topic>Embryo</topic><topic>Embryos</topic><topic>high-frequency ultrasound (HFU)</topic><topic>Image classification</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>Mice</topic><topic>mouse embryo</topic><topic>Mutation</topic><topic>Neural Networks, Computer</topic><topic>Sliding</topic><topic>Three-dimensional displays</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Ziming</creatorcontrib><creatorcontrib>Xu, Tongda</creatorcontrib><creatorcontrib>Langerman, Jack</creatorcontrib><creatorcontrib>Das, William</creatorcontrib><creatorcontrib>Wang, Chuiyu</creatorcontrib><creatorcontrib>Nair, Nitin</creatorcontrib><creatorcontrib>Aristizabal, Orlando</creatorcontrib><creatorcontrib>Mamou, Jonathan</creatorcontrib><creatorcontrib>Turnbull, Daniel H.</creatorcontrib><creatorcontrib>Ketterling, Jeffrey A.</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Ziming</au><au>Xu, Tongda</au><au>Langerman, Jack</au><au>Das, William</au><au>Wang, Chuiyu</au><au>Nair, Nitin</au><au>Aristizabal, Orlando</au><au>Mamou, Jonathan</au><au>Turnbull, Daniel H.</au><au>Ketterling, Jeffrey A.</au><au>Wang, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>68</volume><issue>7</issue><spage>2460</spage><epage>2471</epage><pages>2460-2471</pages><issn>0885-3010</issn><issn>1525-8955</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This article proposes an accurate, efficient and explainable deep learning pipeline for automatic segmentation and classification of the BV and body. For segmentation, a two-stage framework is implemented. The first stage produces a low-resolution segmentation map, which is then used to crop a region of interest (ROI) around the target object and serve as the probability map of the autocontext input for the second-stage fine-resolution refinement network. The segmentation then becomes tractable on high-resolution 3-D images without time-consuming sliding windows. The proposed segmentation method significantly reduces inference time (102.36-0.09 s/volume<inline-formula> <tex-math notation="LaTeX">\approx 1000\times </tex-math></inline-formula> faster) while maintaining high accuracy comparable to previous sliding-window approaches. Based on the BV and body segmentation map, a volumetric convolutional neural network (CNN) is trained to perform a mutant classification task. Through backpropagating the gradients of the predictions to the input BV and body segmentation map, the trained classifier is found to largely focus on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest itself. This suggests that gradient backpropagation of deep learning classifiers may provide a powerful tool for automatically detecting unknown phenotypes associated with a known genetic mutation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33755564</pmid><doi>10.1109/TUFFC.2021.3068156</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1389-7756</orcidid><orcidid>https://orcid.org/0000-0002-9412-165X</orcidid><orcidid>https://orcid.org/0000-0001-8675-7343</orcidid><orcidid>https://orcid.org/0000-0002-5328-0443</orcidid><orcidid>https://orcid.org/0000-0003-3199-3802</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-07, Vol.68 (7), p.2460-2471 |
issn | 0885-3010 1525-8955 1525-8955 |
language | eng |
recordid | cdi_pubmed_primary_33755564 |
source | IEEE Electronic Library (IEL) |
subjects | Animals Artificial neural networks Back propagation Back propagation networks Biomedical imaging Classification Classification and visualization Classifiers Deep Learning Embryo Embryos high-frequency ultrasound (HFU) Image classification Image Processing, Computer-Assisted Image resolution Image segmentation Imaging, Three-Dimensional Location awareness Machine learning Mice mouse embryo Mutation Neural Networks, Computer Sliding Three-dimensional displays Ultrasonic imaging Ultrasonography Windows (intervals) |
title | A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20for%20Segmentation,%20Classification,%20and%20Visualization%20of%203-D%20High-Frequency%20Ultrasound%20Images%20of%20Mouse%20Embryos&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Qiu,%20Ziming&rft.date=2021-07-01&rft.volume=68&rft.issue=7&rft.spage=2460&rft.epage=2471&rft.pages=2460-2471&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2021.3068156&rft_dat=%3Cproquest_RIE%3E2546719577%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546719577&rft_id=info:pmid/33755564&rft_ieee_id=9383281&rfr_iscdi=true |