Transcranial MR-Guided Histotripsy System

Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2021-09, Vol.68 (9), p.2917-2929
Hauptverfasser: Lu, Ning, Hall, Timothy L., Choi, Dave, Gupta, Dinank, Daou, Badih Junior, Sukovich, Jonathan R., Fox, Adam, Gerhardson, Tyler I., Pandey, Aditya S., Noll, Douglas C., Xu, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2929
container_issue 9
container_start_page 2917
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 68
creator Lu, Ning
Hall, Timothy L.
Choi, Dave
Gupta, Dinank
Daou, Badih Junior
Sukovich, Jonathan R.
Fox, Adam
Gerhardson, Tyler I.
Pandey, Aditya S.
Noll, Douglas C.
Xu, Zhen
description Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model.
doi_str_mv 10.1109/TUFFC.2021.3068113
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_33755563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9383249</ieee_id><sourcerecordid>2504778445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-8e02bac4ecb71e6f38645038dccf2bae7b4a730ae7c2cf6535eef2ddf98fa8053</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMobk6_gIIMfNGHzvxt0xdBhtuEiaDbc0jTW83o2pm0wr69mZtDfUlCzu-em5uD0DnBA0Jwejubj0bDAcWUDBiOJSHsAHWJoCKSqRCHqIulFBHDBHfQifcLjAnnKT1GHcYSIUTMuuhm5nTlTVisLvtPL9G4tTnk_Yn1Td04u_Lr_uvaN7A8RUeFLj2c7fYemo8eZsNJNH0ePw7vp5HhAjeRBEwzbTiYLCEQF0zG4Z7J3JgiCJBkXCcMh4OhpogFEwAFzfMilYWWWLAeutv6rtpsCbmBqnG6VCtnl9qtVa2t-qtU9l291Z9KcipFEgeD652Bqz9a8I1aWm-gLHUFdesVFZgnieR80-vqH7qoW1eF8QIVC8pigWmg6JYyrvbeQbF_DMFqk4T6TkJtklC7JELR5e8x9iU_Xx-Aiy1gAWAvp0wyylP2BfXbjW0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565236502</pqid></control><display><type>article</type><title>Transcranial MR-Guided Histotripsy System</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Ning ; Hall, Timothy L. ; Choi, Dave ; Gupta, Dinank ; Daou, Badih Junior ; Sukovich, Jonathan R. ; Fox, Adam ; Gerhardson, Tyler I. ; Pandey, Aditya S. ; Noll, Douglas C. ; Xu, Zhen</creator><creatorcontrib>Lu, Ning ; Hall, Timothy L. ; Choi, Dave ; Gupta, Dinank ; Daou, Badih Junior ; Sukovich, Jonathan R. ; Fox, Adam ; Gerhardson, Tyler I. ; Pandey, Aditya S. ; Noll, Douglas C. ; Xu, Zhen</creatorcontrib><description>Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2021.3068113</identifier><identifier>PMID: 33755563</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aberration ; Acoustics ; Animals ; Arrays ; Biocompatibility ; Brain ; Cavitation ; Edema ; Erythrocytes ; Euthanasia ; Histotripsy ; Hogs ; Image quality ; In vivo ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging (MRI) ; Magnetic Resonance Spectroscopy ; Phantoms, Imaging ; Phased arrays ; Skull - diagnostic imaging ; Skull - surgery ; Steering ; Swine ; therapeutic ultrasound ; transcranial treatment ; Transducers ; Ultrasonic imaging</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-09, Vol.68 (9), p.2917-2929</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-8e02bac4ecb71e6f38645038dccf2bae7b4a730ae7c2cf6535eef2ddf98fa8053</citedby><cites>FETCH-LOGICAL-c450t-8e02bac4ecb71e6f38645038dccf2bae7b4a730ae7c2cf6535eef2ddf98fa8053</cites><orcidid>0000-0003-0262-3044 ; 0000-0002-8110-9176 ; 0000-0002-4548-5588 ; 0000-0002-4867-2856 ; 0000-0002-1249-7187 ; 0000-0002-5650-991X ; 0000-0002-0983-3805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9383249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9383249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33755563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>Hall, Timothy L.</creatorcontrib><creatorcontrib>Choi, Dave</creatorcontrib><creatorcontrib>Gupta, Dinank</creatorcontrib><creatorcontrib>Daou, Badih Junior</creatorcontrib><creatorcontrib>Sukovich, Jonathan R.</creatorcontrib><creatorcontrib>Fox, Adam</creatorcontrib><creatorcontrib>Gerhardson, Tyler I.</creatorcontrib><creatorcontrib>Pandey, Aditya S.</creatorcontrib><creatorcontrib>Noll, Douglas C.</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><title>Transcranial MR-Guided Histotripsy System</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model.</description><subject>Aberration</subject><subject>Acoustics</subject><subject>Animals</subject><subject>Arrays</subject><subject>Biocompatibility</subject><subject>Brain</subject><subject>Cavitation</subject><subject>Edema</subject><subject>Erythrocytes</subject><subject>Euthanasia</subject><subject>Histotripsy</subject><subject>Hogs</subject><subject>Image quality</subject><subject>In vivo</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging (MRI)</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Phantoms, Imaging</subject><subject>Phased arrays</subject><subject>Skull - diagnostic imaging</subject><subject>Skull - surgery</subject><subject>Steering</subject><subject>Swine</subject><subject>therapeutic ultrasound</subject><subject>transcranial treatment</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV9LwzAUxYMobk6_gIIMfNGHzvxt0xdBhtuEiaDbc0jTW83o2pm0wr69mZtDfUlCzu-em5uD0DnBA0Jwejubj0bDAcWUDBiOJSHsAHWJoCKSqRCHqIulFBHDBHfQifcLjAnnKT1GHcYSIUTMuuhm5nTlTVisLvtPL9G4tTnk_Yn1Td04u_Lr_uvaN7A8RUeFLj2c7fYemo8eZsNJNH0ePw7vp5HhAjeRBEwzbTiYLCEQF0zG4Z7J3JgiCJBkXCcMh4OhpogFEwAFzfMilYWWWLAeutv6rtpsCbmBqnG6VCtnl9qtVa2t-qtU9l291Z9KcipFEgeD652Bqz9a8I1aWm-gLHUFdesVFZgnieR80-vqH7qoW1eF8QIVC8pigWmg6JYyrvbeQbF_DMFqk4T6TkJtklC7JELR5e8x9iU_Xx-Aiy1gAWAvp0wyylP2BfXbjW0</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lu, Ning</creator><creator>Hall, Timothy L.</creator><creator>Choi, Dave</creator><creator>Gupta, Dinank</creator><creator>Daou, Badih Junior</creator><creator>Sukovich, Jonathan R.</creator><creator>Fox, Adam</creator><creator>Gerhardson, Tyler I.</creator><creator>Pandey, Aditya S.</creator><creator>Noll, Douglas C.</creator><creator>Xu, Zhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0262-3044</orcidid><orcidid>https://orcid.org/0000-0002-8110-9176</orcidid><orcidid>https://orcid.org/0000-0002-4548-5588</orcidid><orcidid>https://orcid.org/0000-0002-4867-2856</orcidid><orcidid>https://orcid.org/0000-0002-1249-7187</orcidid><orcidid>https://orcid.org/0000-0002-5650-991X</orcidid><orcidid>https://orcid.org/0000-0002-0983-3805</orcidid></search><sort><creationdate>20210901</creationdate><title>Transcranial MR-Guided Histotripsy System</title><author>Lu, Ning ; Hall, Timothy L. ; Choi, Dave ; Gupta, Dinank ; Daou, Badih Junior ; Sukovich, Jonathan R. ; Fox, Adam ; Gerhardson, Tyler I. ; Pandey, Aditya S. ; Noll, Douglas C. ; Xu, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-8e02bac4ecb71e6f38645038dccf2bae7b4a730ae7c2cf6535eef2ddf98fa8053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aberration</topic><topic>Acoustics</topic><topic>Animals</topic><topic>Arrays</topic><topic>Biocompatibility</topic><topic>Brain</topic><topic>Cavitation</topic><topic>Edema</topic><topic>Erythrocytes</topic><topic>Euthanasia</topic><topic>Histotripsy</topic><topic>Hogs</topic><topic>Image quality</topic><topic>In vivo</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging (MRI)</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Phantoms, Imaging</topic><topic>Phased arrays</topic><topic>Skull - diagnostic imaging</topic><topic>Skull - surgery</topic><topic>Steering</topic><topic>Swine</topic><topic>therapeutic ultrasound</topic><topic>transcranial treatment</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>Hall, Timothy L.</creatorcontrib><creatorcontrib>Choi, Dave</creatorcontrib><creatorcontrib>Gupta, Dinank</creatorcontrib><creatorcontrib>Daou, Badih Junior</creatorcontrib><creatorcontrib>Sukovich, Jonathan R.</creatorcontrib><creatorcontrib>Fox, Adam</creatorcontrib><creatorcontrib>Gerhardson, Tyler I.</creatorcontrib><creatorcontrib>Pandey, Aditya S.</creatorcontrib><creatorcontrib>Noll, Douglas C.</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Ning</au><au>Hall, Timothy L.</au><au>Choi, Dave</au><au>Gupta, Dinank</au><au>Daou, Badih Junior</au><au>Sukovich, Jonathan R.</au><au>Fox, Adam</au><au>Gerhardson, Tyler I.</au><au>Pandey, Aditya S.</au><au>Noll, Douglas C.</au><au>Xu, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcranial MR-Guided Histotripsy System</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>9</issue><spage>2917</spage><epage>2929</epage><pages>2917-2929</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33755563</pmid><doi>10.1109/TUFFC.2021.3068113</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0262-3044</orcidid><orcidid>https://orcid.org/0000-0002-8110-9176</orcidid><orcidid>https://orcid.org/0000-0002-4548-5588</orcidid><orcidid>https://orcid.org/0000-0002-4867-2856</orcidid><orcidid>https://orcid.org/0000-0002-1249-7187</orcidid><orcidid>https://orcid.org/0000-0002-5650-991X</orcidid><orcidid>https://orcid.org/0000-0002-0983-3805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-09, Vol.68 (9), p.2917-2929
issn 0885-3010
1525-8955
language eng
recordid cdi_pubmed_primary_33755563
source IEEE Electronic Library (IEL)
subjects Aberration
Acoustics
Animals
Arrays
Biocompatibility
Brain
Cavitation
Edema
Erythrocytes
Euthanasia
Histotripsy
Hogs
Image quality
In vivo
Magnetic Resonance Imaging
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Spectroscopy
Phantoms, Imaging
Phased arrays
Skull - diagnostic imaging
Skull - surgery
Steering
Swine
therapeutic ultrasound
transcranial treatment
Transducers
Ultrasonic imaging
title Transcranial MR-Guided Histotripsy System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcranial%20MR-Guided%20Histotripsy%20System&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Lu,%20Ning&rft.date=2021-09-01&rft.volume=68&rft.issue=9&rft.spage=2917&rft.epage=2929&rft.pages=2917-2929&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2021.3068113&rft_dat=%3Cproquest_RIE%3E2504778445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565236502&rft_id=info:pmid/33755563&rft_ieee_id=9383249&rfr_iscdi=true