Transcranial MR-Guided Histotripsy System
Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skul...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2021-09, Vol.68 (9), p.2917-2929 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2929 |
---|---|
container_issue | 9 |
container_start_page | 2917 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 68 |
creator | Lu, Ning Hall, Timothy L. Choi, Dave Gupta, Dinank Daou, Badih Junior Sukovich, Jonathan R. Fox, Adam Gerhardson, Tyler I. Pandey, Aditya S. Noll, Douglas C. Xu, Zhen |
description | Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model. |
doi_str_mv | 10.1109/TUFFC.2021.3068113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_33755563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9383249</ieee_id><sourcerecordid>2504778445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-8e02bac4ecb71e6f38645038dccf2bae7b4a730ae7c2cf6535eef2ddf98fa8053</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMobk6_gIIMfNGHzvxt0xdBhtuEiaDbc0jTW83o2pm0wr69mZtDfUlCzu-em5uD0DnBA0Jwejubj0bDAcWUDBiOJSHsAHWJoCKSqRCHqIulFBHDBHfQifcLjAnnKT1GHcYSIUTMuuhm5nTlTVisLvtPL9G4tTnk_Yn1Td04u_Lr_uvaN7A8RUeFLj2c7fYemo8eZsNJNH0ePw7vp5HhAjeRBEwzbTiYLCEQF0zG4Z7J3JgiCJBkXCcMh4OhpogFEwAFzfMilYWWWLAeutv6rtpsCbmBqnG6VCtnl9qtVa2t-qtU9l291Z9KcipFEgeD652Bqz9a8I1aWm-gLHUFdesVFZgnieR80-vqH7qoW1eF8QIVC8pigWmg6JYyrvbeQbF_DMFqk4T6TkJtklC7JELR5e8x9iU_Xx-Aiy1gAWAvp0wyylP2BfXbjW0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565236502</pqid></control><display><type>article</type><title>Transcranial MR-Guided Histotripsy System</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Ning ; Hall, Timothy L. ; Choi, Dave ; Gupta, Dinank ; Daou, Badih Junior ; Sukovich, Jonathan R. ; Fox, Adam ; Gerhardson, Tyler I. ; Pandey, Aditya S. ; Noll, Douglas C. ; Xu, Zhen</creator><creatorcontrib>Lu, Ning ; Hall, Timothy L. ; Choi, Dave ; Gupta, Dinank ; Daou, Badih Junior ; Sukovich, Jonathan R. ; Fox, Adam ; Gerhardson, Tyler I. ; Pandey, Aditya S. ; Noll, Douglas C. ; Xu, Zhen</creatorcontrib><description>Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2021.3068113</identifier><identifier>PMID: 33755563</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aberration ; Acoustics ; Animals ; Arrays ; Biocompatibility ; Brain ; Cavitation ; Edema ; Erythrocytes ; Euthanasia ; Histotripsy ; Hogs ; Image quality ; In vivo ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging (MRI) ; Magnetic Resonance Spectroscopy ; Phantoms, Imaging ; Phased arrays ; Skull - diagnostic imaging ; Skull - surgery ; Steering ; Swine ; therapeutic ultrasound ; transcranial treatment ; Transducers ; Ultrasonic imaging</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-09, Vol.68 (9), p.2917-2929</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-8e02bac4ecb71e6f38645038dccf2bae7b4a730ae7c2cf6535eef2ddf98fa8053</citedby><cites>FETCH-LOGICAL-c450t-8e02bac4ecb71e6f38645038dccf2bae7b4a730ae7c2cf6535eef2ddf98fa8053</cites><orcidid>0000-0003-0262-3044 ; 0000-0002-8110-9176 ; 0000-0002-4548-5588 ; 0000-0002-4867-2856 ; 0000-0002-1249-7187 ; 0000-0002-5650-991X ; 0000-0002-0983-3805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9383249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9383249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33755563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>Hall, Timothy L.</creatorcontrib><creatorcontrib>Choi, Dave</creatorcontrib><creatorcontrib>Gupta, Dinank</creatorcontrib><creatorcontrib>Daou, Badih Junior</creatorcontrib><creatorcontrib>Sukovich, Jonathan R.</creatorcontrib><creatorcontrib>Fox, Adam</creatorcontrib><creatorcontrib>Gerhardson, Tyler I.</creatorcontrib><creatorcontrib>Pandey, Aditya S.</creatorcontrib><creatorcontrib>Noll, Douglas C.</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><title>Transcranial MR-Guided Histotripsy System</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model.</description><subject>Aberration</subject><subject>Acoustics</subject><subject>Animals</subject><subject>Arrays</subject><subject>Biocompatibility</subject><subject>Brain</subject><subject>Cavitation</subject><subject>Edema</subject><subject>Erythrocytes</subject><subject>Euthanasia</subject><subject>Histotripsy</subject><subject>Hogs</subject><subject>Image quality</subject><subject>In vivo</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging (MRI)</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Phantoms, Imaging</subject><subject>Phased arrays</subject><subject>Skull - diagnostic imaging</subject><subject>Skull - surgery</subject><subject>Steering</subject><subject>Swine</subject><subject>therapeutic ultrasound</subject><subject>transcranial treatment</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV9LwzAUxYMobk6_gIIMfNGHzvxt0xdBhtuEiaDbc0jTW83o2pm0wr69mZtDfUlCzu-em5uD0DnBA0Jwejubj0bDAcWUDBiOJSHsAHWJoCKSqRCHqIulFBHDBHfQifcLjAnnKT1GHcYSIUTMuuhm5nTlTVisLvtPL9G4tTnk_Yn1Td04u_Lr_uvaN7A8RUeFLj2c7fYemo8eZsNJNH0ePw7vp5HhAjeRBEwzbTiYLCEQF0zG4Z7J3JgiCJBkXCcMh4OhpogFEwAFzfMilYWWWLAeutv6rtpsCbmBqnG6VCtnl9qtVa2t-qtU9l291Z9KcipFEgeD652Bqz9a8I1aWm-gLHUFdesVFZgnieR80-vqH7qoW1eF8QIVC8pigWmg6JYyrvbeQbF_DMFqk4T6TkJtklC7JELR5e8x9iU_Xx-Aiy1gAWAvp0wyylP2BfXbjW0</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lu, Ning</creator><creator>Hall, Timothy L.</creator><creator>Choi, Dave</creator><creator>Gupta, Dinank</creator><creator>Daou, Badih Junior</creator><creator>Sukovich, Jonathan R.</creator><creator>Fox, Adam</creator><creator>Gerhardson, Tyler I.</creator><creator>Pandey, Aditya S.</creator><creator>Noll, Douglas C.</creator><creator>Xu, Zhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0262-3044</orcidid><orcidid>https://orcid.org/0000-0002-8110-9176</orcidid><orcidid>https://orcid.org/0000-0002-4548-5588</orcidid><orcidid>https://orcid.org/0000-0002-4867-2856</orcidid><orcidid>https://orcid.org/0000-0002-1249-7187</orcidid><orcidid>https://orcid.org/0000-0002-5650-991X</orcidid><orcidid>https://orcid.org/0000-0002-0983-3805</orcidid></search><sort><creationdate>20210901</creationdate><title>Transcranial MR-Guided Histotripsy System</title><author>Lu, Ning ; Hall, Timothy L. ; Choi, Dave ; Gupta, Dinank ; Daou, Badih Junior ; Sukovich, Jonathan R. ; Fox, Adam ; Gerhardson, Tyler I. ; Pandey, Aditya S. ; Noll, Douglas C. ; Xu, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-8e02bac4ecb71e6f38645038dccf2bae7b4a730ae7c2cf6535eef2ddf98fa8053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aberration</topic><topic>Acoustics</topic><topic>Animals</topic><topic>Arrays</topic><topic>Biocompatibility</topic><topic>Brain</topic><topic>Cavitation</topic><topic>Edema</topic><topic>Erythrocytes</topic><topic>Euthanasia</topic><topic>Histotripsy</topic><topic>Hogs</topic><topic>Image quality</topic><topic>In vivo</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging (MRI)</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Phantoms, Imaging</topic><topic>Phased arrays</topic><topic>Skull - diagnostic imaging</topic><topic>Skull - surgery</topic><topic>Steering</topic><topic>Swine</topic><topic>therapeutic ultrasound</topic><topic>transcranial treatment</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>Hall, Timothy L.</creatorcontrib><creatorcontrib>Choi, Dave</creatorcontrib><creatorcontrib>Gupta, Dinank</creatorcontrib><creatorcontrib>Daou, Badih Junior</creatorcontrib><creatorcontrib>Sukovich, Jonathan R.</creatorcontrib><creatorcontrib>Fox, Adam</creatorcontrib><creatorcontrib>Gerhardson, Tyler I.</creatorcontrib><creatorcontrib>Pandey, Aditya S.</creatorcontrib><creatorcontrib>Noll, Douglas C.</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Ning</au><au>Hall, Timothy L.</au><au>Choi, Dave</au><au>Gupta, Dinank</au><au>Daou, Badih Junior</au><au>Sukovich, Jonathan R.</au><au>Fox, Adam</au><au>Gerhardson, Tyler I.</au><au>Pandey, Aditya S.</au><au>Noll, Douglas C.</au><au>Xu, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcranial MR-Guided Histotripsy System</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>9</issue><spage>2917</spage><epage>2929</epage><pages>2917-2929</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Histotripsy has been previously shown to treat a wide range of locations through excised human skulls in vitro . In this article, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, characterized, and tested in the in vivo pig brain through an excised human skull. A 700-kHz, 128-element MR-compatible phased-array ultrasound transducer with a focal depth of 15 cm was designed and fabricated in-house. Support structures were also constructed to facilitate transcranial treatment. The tcMRgHt array was acoustically characterized with a peak negative pressure up to 137 MPa in free field, 72 MPa through an excised human skull with aberration correction, and 48.4 MPa without aberration correction. The electronic focal steering range through the skull was 33.5 mm laterally and 50 mm axially, where a peak negative pressure above the 26-MPa cavitation intrinsic threshold can be achieved. The MR compatibility of the tcMRgHt system was assessed quantitatively using SNR, B0 field map, and B1 field map in a clinical 3T magnetic resonance imaging (MRI) scanner. Transcranial treatment using electronic focal steering was validated in red blood cell phantoms and in vivo pig brain through an excised human skull. In two pigs, targeted cerebral tissue was successfully treated through the human skull as confirmed by MRI. Excessive bleeding or edema was not observed in the peri-target zones by the time of pig euthanasia. These results demonstrated the feasibility of using this preclinical tcMRgHt system for in vivo transcranial treatment in a swine model.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33755563</pmid><doi>10.1109/TUFFC.2021.3068113</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0262-3044</orcidid><orcidid>https://orcid.org/0000-0002-8110-9176</orcidid><orcidid>https://orcid.org/0000-0002-4548-5588</orcidid><orcidid>https://orcid.org/0000-0002-4867-2856</orcidid><orcidid>https://orcid.org/0000-0002-1249-7187</orcidid><orcidid>https://orcid.org/0000-0002-5650-991X</orcidid><orcidid>https://orcid.org/0000-0002-0983-3805</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-09, Vol.68 (9), p.2917-2929 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_pubmed_primary_33755563 |
source | IEEE Electronic Library (IEL) |
subjects | Aberration Acoustics Animals Arrays Biocompatibility Brain Cavitation Edema Erythrocytes Euthanasia Histotripsy Hogs Image quality In vivo Magnetic Resonance Imaging Magnetic Resonance Imaging (MRI) Magnetic Resonance Spectroscopy Phantoms, Imaging Phased arrays Skull - diagnostic imaging Skull - surgery Steering Swine therapeutic ultrasound transcranial treatment Transducers Ultrasonic imaging |
title | Transcranial MR-Guided Histotripsy System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcranial%20MR-Guided%20Histotripsy%20System&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Lu,%20Ning&rft.date=2021-09-01&rft.volume=68&rft.issue=9&rft.spage=2917&rft.epage=2929&rft.pages=2917-2929&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2021.3068113&rft_dat=%3Cproquest_RIE%3E2504778445%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565236502&rft_id=info:pmid/33755563&rft_ieee_id=9383249&rfr_iscdi=true |