Wireless Reconfigurable RF Detector Array for Focal and Multiregional Signal Enhancement

Wirelessly Amplified NMR Detectors (WAND) can utilize wireless pumping power to amplify MRI signals in situ for sensitivity enhancement of deep-lying tissues that are difficult to access by conventional surface coils. To reconfigure between selective and simultaneous activation in a multielement arr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.136594-136604
Hauptverfasser: Qian, Wei, Yu, Xin, Qian, Chunqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136604
container_issue
container_start_page 136594
container_title IEEE access
container_volume 8
creator Qian, Wei
Yu, Xin
Qian, Chunqi
description Wirelessly Amplified NMR Detectors (WAND) can utilize wireless pumping power to amplify MRI signals in situ for sensitivity enhancement of deep-lying tissues that are difficult to access by conventional surface coils. To reconfigure between selective and simultaneous activation in a multielement array, each WAND has a dipole resonance mode for MR signal acquisition and two butterfly modes that support counter-rotating current circulation. Because detectors in the same row share the same lower butterfly frequency but different higher butterfly frequency, a pumping signal at the sum frequency of the dipole mode and the higher butterfly mode can selectively activate individual resonators, leading to 4-fold sensitivity gain over passive coupling. Meanwhile, a pumping signal at the sum frequency of the dipole mode and the lower butterfly mode can simultaneously activate multiple resonators in the same row, leading to 3-fold sensitivity gain over passive coupling. When multiple rows of detectors are parallelly aligned, each row has a unique lower butterfly frequency for consecutive activation during the acquisition interval of the others. This wireless detector array can be embedded beneath a headpost that is normally required for multi-modal brain imaging, enabling easy reconfiguration between focal imaging of individual vessels and multiregional mapping of brain connectivity.
doi_str_mv 10.1109/ACCESS.2020.3011905
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33747678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9146848</ieee_id><doaj_id>oai_doaj_org_article_c47be6f997ed46a9b7fe561377e745c6</doaj_id><sourcerecordid>2503666783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-f667223bdbe53c3819bf8275cca92cd55425fd3cefb6616092078fe8ee8ccab93</originalsourceid><addsrcrecordid>eNpdUl1rFDEUHUSxpfYXFGTAF192zffHi7Bsd7VQEbqKvoVM5mY6y-ykJjNC_70ZZ11a83Iv5557yElOUVxhtMQY6Q-r9Xqz2y0JImhJEcYa8RfFOcFCLyin4uWT_qy4TGmP8lEZ4vJ1cUapZFJIdV78_NFG6CCl8g5c6H3bjNFWHZR32_IaBnBDiOUqRvtY-txtg7Ndafu6_DJ2Q15t2tBnZNc2U9n097Z3cIB-eFO88rZLcHmsF8X37ebb-vPi9uunm_XqduE41sPCCyEJoVVdAaeOKqwrr4jkzllNXM05I9zX1IGvhMACaYKk8qAAVKZUml4UN7NuHezePMT2YOOjCbY1f4EQG2Pj0LoOjGOyAuG1llAzYXUlPXCBqZQgGXcia32ctR7G6gC1yzai7Z6JPp_07b1pwm8jtcRY0izw_igQw68R0mAObXLQdbaHMCZDOKIiO1YT9d1_1H0YY37EzGKcCYaFnNzRmeViSCmCP10GIzMFwcxBMFMQzDEIeevtUx-nnX_fnglXM6EFgNNYYyYUU_QPKMW39w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641679</pqid></control><display><type>article</type><title>Wireless Reconfigurable RF Detector Array for Focal and Multiregional Signal Enhancement</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qian, Wei ; Yu, Xin ; Qian, Chunqi</creator><creatorcontrib>Qian, Wei ; Yu, Xin ; Qian, Chunqi</creatorcontrib><description>Wirelessly Amplified NMR Detectors (WAND) can utilize wireless pumping power to amplify MRI signals in situ for sensitivity enhancement of deep-lying tissues that are difficult to access by conventional surface coils. To reconfigure between selective and simultaneous activation in a multielement array, each WAND has a dipole resonance mode for MR signal acquisition and two butterfly modes that support counter-rotating current circulation. Because detectors in the same row share the same lower butterfly frequency but different higher butterfly frequency, a pumping signal at the sum frequency of the dipole mode and the higher butterfly mode can selectively activate individual resonators, leading to 4-fold sensitivity gain over passive coupling. Meanwhile, a pumping signal at the sum frequency of the dipole mode and the lower butterfly mode can simultaneously activate multiple resonators in the same row, leading to 3-fold sensitivity gain over passive coupling. When multiple rows of detectors are parallelly aligned, each row has a unique lower butterfly frequency for consecutive activation during the acquisition interval of the others. This wireless detector array can be embedded beneath a headpost that is normally required for multi-modal brain imaging, enabling easy reconfiguration between focal imaging of individual vessels and multiregional mapping of brain connectivity.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3011905</identifier><identifier>PMID: 33747678</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amplification ; Arrays ; Brain ; Coils ; Communication system security ; Conductors ; Coupling ; Detectors ; Dipoles ; inductive power transmission ; magnetic resonance ; Medical imaging ; NMR ; nonlinear circuits ; Nuclear magnetic resonance ; Pumping ; Reconfiguration ; Resonant frequency ; Resonators ; Sensitivity enhancement ; Sensor arrays ; Sensors ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE access, 2020, Vol.8, p.136594-136604</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-f667223bdbe53c3819bf8275cca92cd55425fd3cefb6616092078fe8ee8ccab93</citedby><cites>FETCH-LOGICAL-c519t-f667223bdbe53c3819bf8275cca92cd55425fd3cefb6616092078fe8ee8ccab93</cites><orcidid>0000-0003-4528-4572 ; 0000-0001-9776-2359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9146848$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33747678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Wei</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Qian, Chunqi</creatorcontrib><title>Wireless Reconfigurable RF Detector Array for Focal and Multiregional Signal Enhancement</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE Access</addtitle><description>Wirelessly Amplified NMR Detectors (WAND) can utilize wireless pumping power to amplify MRI signals in situ for sensitivity enhancement of deep-lying tissues that are difficult to access by conventional surface coils. To reconfigure between selective and simultaneous activation in a multielement array, each WAND has a dipole resonance mode for MR signal acquisition and two butterfly modes that support counter-rotating current circulation. Because detectors in the same row share the same lower butterfly frequency but different higher butterfly frequency, a pumping signal at the sum frequency of the dipole mode and the higher butterfly mode can selectively activate individual resonators, leading to 4-fold sensitivity gain over passive coupling. Meanwhile, a pumping signal at the sum frequency of the dipole mode and the lower butterfly mode can simultaneously activate multiple resonators in the same row, leading to 3-fold sensitivity gain over passive coupling. When multiple rows of detectors are parallelly aligned, each row has a unique lower butterfly frequency for consecutive activation during the acquisition interval of the others. This wireless detector array can be embedded beneath a headpost that is normally required for multi-modal brain imaging, enabling easy reconfiguration between focal imaging of individual vessels and multiregional mapping of brain connectivity.</description><subject>Amplification</subject><subject>Arrays</subject><subject>Brain</subject><subject>Coils</subject><subject>Communication system security</subject><subject>Conductors</subject><subject>Coupling</subject><subject>Detectors</subject><subject>Dipoles</subject><subject>inductive power transmission</subject><subject>magnetic resonance</subject><subject>Medical imaging</subject><subject>NMR</subject><subject>nonlinear circuits</subject><subject>Nuclear magnetic resonance</subject><subject>Pumping</subject><subject>Reconfiguration</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Sensitivity enhancement</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdUl1rFDEUHUSxpfYXFGTAF192zffHi7Bsd7VQEbqKvoVM5mY6y-ykJjNC_70ZZ11a83Iv5557yElOUVxhtMQY6Q-r9Xqz2y0JImhJEcYa8RfFOcFCLyin4uWT_qy4TGmP8lEZ4vJ1cUapZFJIdV78_NFG6CCl8g5c6H3bjNFWHZR32_IaBnBDiOUqRvtY-txtg7Ndafu6_DJ2Q15t2tBnZNc2U9n097Z3cIB-eFO88rZLcHmsF8X37ebb-vPi9uunm_XqduE41sPCCyEJoVVdAaeOKqwrr4jkzllNXM05I9zX1IGvhMACaYKk8qAAVKZUml4UN7NuHezePMT2YOOjCbY1f4EQG2Pj0LoOjGOyAuG1llAzYXUlPXCBqZQgGXcia32ctR7G6gC1yzai7Z6JPp_07b1pwm8jtcRY0izw_igQw68R0mAObXLQdbaHMCZDOKIiO1YT9d1_1H0YY37EzGKcCYaFnNzRmeViSCmCP10GIzMFwcxBMFMQzDEIeevtUx-nnX_fnglXM6EFgNNYYyYUU_QPKMW39w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Qian, Wei</creator><creator>Yu, Xin</creator><creator>Qian, Chunqi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4528-4572</orcidid><orcidid>https://orcid.org/0000-0001-9776-2359</orcidid></search><sort><creationdate>2020</creationdate><title>Wireless Reconfigurable RF Detector Array for Focal and Multiregional Signal Enhancement</title><author>Qian, Wei ; Yu, Xin ; Qian, Chunqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-f667223bdbe53c3819bf8275cca92cd55425fd3cefb6616092078fe8ee8ccab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplification</topic><topic>Arrays</topic><topic>Brain</topic><topic>Coils</topic><topic>Communication system security</topic><topic>Conductors</topic><topic>Coupling</topic><topic>Detectors</topic><topic>Dipoles</topic><topic>inductive power transmission</topic><topic>magnetic resonance</topic><topic>Medical imaging</topic><topic>NMR</topic><topic>nonlinear circuits</topic><topic>Nuclear magnetic resonance</topic><topic>Pumping</topic><topic>Reconfiguration</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Sensitivity enhancement</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Wei</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Qian, Chunqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Wei</au><au>Yu, Xin</au><au>Qian, Chunqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Reconfigurable RF Detector Array for Focal and Multiregional Signal Enhancement</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><addtitle>IEEE Access</addtitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>136594</spage><epage>136604</epage><pages>136594-136604</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Wirelessly Amplified NMR Detectors (WAND) can utilize wireless pumping power to amplify MRI signals in situ for sensitivity enhancement of deep-lying tissues that are difficult to access by conventional surface coils. To reconfigure between selective and simultaneous activation in a multielement array, each WAND has a dipole resonance mode for MR signal acquisition and two butterfly modes that support counter-rotating current circulation. Because detectors in the same row share the same lower butterfly frequency but different higher butterfly frequency, a pumping signal at the sum frequency of the dipole mode and the higher butterfly mode can selectively activate individual resonators, leading to 4-fold sensitivity gain over passive coupling. Meanwhile, a pumping signal at the sum frequency of the dipole mode and the lower butterfly mode can simultaneously activate multiple resonators in the same row, leading to 3-fold sensitivity gain over passive coupling. When multiple rows of detectors are parallelly aligned, each row has a unique lower butterfly frequency for consecutive activation during the acquisition interval of the others. This wireless detector array can be embedded beneath a headpost that is normally required for multi-modal brain imaging, enabling easy reconfiguration between focal imaging of individual vessels and multiregional mapping of brain connectivity.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33747678</pmid><doi>10.1109/ACCESS.2020.3011905</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4528-4572</orcidid><orcidid>https://orcid.org/0000-0001-9776-2359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.136594-136604
issn 2169-3536
2169-3536
language eng
recordid cdi_pubmed_primary_33747678
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amplification
Arrays
Brain
Coils
Communication system security
Conductors
Coupling
Detectors
Dipoles
inductive power transmission
magnetic resonance
Medical imaging
NMR
nonlinear circuits
Nuclear magnetic resonance
Pumping
Reconfiguration
Resonant frequency
Resonators
Sensitivity enhancement
Sensor arrays
Sensors
Wireless communication
Wireless sensor networks
title Wireless Reconfigurable RF Detector Array for Focal and Multiregional Signal Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Reconfigurable%20RF%20Detector%20Array%20for%20Focal%20and%20Multiregional%20Signal%20Enhancement&rft.jtitle=IEEE%20access&rft.au=Qian,%20Wei&rft.date=2020&rft.volume=8&rft.spage=136594&rft.epage=136604&rft.pages=136594-136604&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3011905&rft_dat=%3Cproquest_pubme%3E2503666783%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454641679&rft_id=info:pmid/33747678&rft_ieee_id=9146848&rft_doaj_id=oai_doaj_org_article_c47be6f997ed46a9b7fe561377e745c6&rfr_iscdi=true