The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD
Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophil...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2019-03, Vol.294 (9), p.3271 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 3271 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Schut, Gerrit J Mohamed-Raseek, Nishya Tokmina-Lukaszewska, Monika Mulder, David W Nguyen, Diep M N Lipscomb, Gina L Hoben, John P Patterson, Angela Lubner, Carolyn E King, Paul W Peters, John W Bothner, Brian Miller, Anne-Frances Adams, Michael W W |
description | Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum. The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD
, we propose a catalytic cycle involving formation of an intermediary NAD
-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP
oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD
, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family. |
doi_str_mv | 10.1074/jbc.RA118.005653 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_33743959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33743959</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-ecda5818adb7a3675f0370871b218ccdafb5d3032f1ba22fb7f6d4f6bc4e54ce3</originalsourceid><addsrcrecordid>eNo9UE1LAzEUDILYWr17khz1sDXZbDbbY6mtCkVBKngrSfbFpuxmlyRt7c2fbsCPd3nDvGGYeQhdUTKmRBR3W6XHr1NKqzEhvOTsBA0pqVjGOH0foPMQtiRNMaFnaMCYKNiET4boa7UBrGWUzTFajVvQG-lsaHFnMDSgo-9cpqzZ-SSy7uOfxNFLFwx4bBq573rfRbAu4Jv5ahFusXX7rtlDwNIlHMG3UFvpj1h3bd_AJz7YuMHP0_sLdGpkE-Dyd4_Q22K-mj1my5eHp9l0mfWpRcxA15JXtJK1EpKVghvCBKkEVTmtdDoaxWtGWG6oknlulDBlXZhS6QJ4oYGN0PWPb79TKcu697ZNedZ_r2DfluJjNQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Schut, Gerrit J ; Mohamed-Raseek, Nishya ; Tokmina-Lukaszewska, Monika ; Mulder, David W ; Nguyen, Diep M N ; Lipscomb, Gina L ; Hoben, John P ; Patterson, Angela ; Lubner, Carolyn E ; King, Paul W ; Peters, John W ; Bothner, Brian ; Miller, Anne-Frances ; Adams, Michael W W</creator><creatorcontrib>Schut, Gerrit J ; Mohamed-Raseek, Nishya ; Tokmina-Lukaszewska, Monika ; Mulder, David W ; Nguyen, Diep M N ; Lipscomb, Gina L ; Hoben, John P ; Patterson, Angela ; Lubner, Carolyn E ; King, Paul W ; Peters, John W ; Bothner, Brian ; Miller, Anne-Frances ; Adams, Michael W W</creatorcontrib><description>Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum. The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD
, we propose a catalytic cycle involving formation of an intermediary NAD
-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP
oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD
, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.</description><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.005653</identifier><identifier>PMID: 33743959</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of biological chemistry, 2019-03, Vol.294 (9), p.3271</ispartof><rights>Copyright © 2019 © 2019 THE AUTHORS. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33743959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schut, Gerrit J</creatorcontrib><creatorcontrib>Mohamed-Raseek, Nishya</creatorcontrib><creatorcontrib>Tokmina-Lukaszewska, Monika</creatorcontrib><creatorcontrib>Mulder, David W</creatorcontrib><creatorcontrib>Nguyen, Diep M N</creatorcontrib><creatorcontrib>Lipscomb, Gina L</creatorcontrib><creatorcontrib>Hoben, John P</creatorcontrib><creatorcontrib>Patterson, Angela</creatorcontrib><creatorcontrib>Lubner, Carolyn E</creatorcontrib><creatorcontrib>King, Paul W</creatorcontrib><creatorcontrib>Peters, John W</creatorcontrib><creatorcontrib>Bothner, Brian</creatorcontrib><creatorcontrib>Miller, Anne-Frances</creatorcontrib><creatorcontrib>Adams, Michael W W</creatorcontrib><title>The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum. The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD
, we propose a catalytic cycle involving formation of an intermediary NAD
-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP
oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD
, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.</description><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEUDILYWr17khz1sDXZbDbbY6mtCkVBKngrSfbFpuxmlyRt7c2fbsCPd3nDvGGYeQhdUTKmRBR3W6XHr1NKqzEhvOTsBA0pqVjGOH0foPMQtiRNMaFnaMCYKNiET4boa7UBrGWUzTFajVvQG-lsaHFnMDSgo-9cpqzZ-SSy7uOfxNFLFwx4bBq573rfRbAu4Jv5ahFusXX7rtlDwNIlHMG3UFvpj1h3bd_AJz7YuMHP0_sLdGpkE-Dyd4_Q22K-mj1my5eHp9l0mfWpRcxA15JXtJK1EpKVghvCBKkEVTmtdDoaxWtGWG6oknlulDBlXZhS6QJ4oYGN0PWPb79TKcu697ZNedZ_r2DfluJjNQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Schut, Gerrit J</creator><creator>Mohamed-Raseek, Nishya</creator><creator>Tokmina-Lukaszewska, Monika</creator><creator>Mulder, David W</creator><creator>Nguyen, Diep M N</creator><creator>Lipscomb, Gina L</creator><creator>Hoben, John P</creator><creator>Patterson, Angela</creator><creator>Lubner, Carolyn E</creator><creator>King, Paul W</creator><creator>Peters, John W</creator><creator>Bothner, Brian</creator><creator>Miller, Anne-Frances</creator><creator>Adams, Michael W W</creator><scope>NPM</scope></search><sort><creationdate>20190301</creationdate><title>The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD</title><author>Schut, Gerrit J ; Mohamed-Raseek, Nishya ; Tokmina-Lukaszewska, Monika ; Mulder, David W ; Nguyen, Diep M N ; Lipscomb, Gina L ; Hoben, John P ; Patterson, Angela ; Lubner, Carolyn E ; King, Paul W ; Peters, John W ; Bothner, Brian ; Miller, Anne-Frances ; Adams, Michael W W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-ecda5818adb7a3675f0370871b218ccdafb5d3032f1ba22fb7f6d4f6bc4e54ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schut, Gerrit J</creatorcontrib><creatorcontrib>Mohamed-Raseek, Nishya</creatorcontrib><creatorcontrib>Tokmina-Lukaszewska, Monika</creatorcontrib><creatorcontrib>Mulder, David W</creatorcontrib><creatorcontrib>Nguyen, Diep M N</creatorcontrib><creatorcontrib>Lipscomb, Gina L</creatorcontrib><creatorcontrib>Hoben, John P</creatorcontrib><creatorcontrib>Patterson, Angela</creatorcontrib><creatorcontrib>Lubner, Carolyn E</creatorcontrib><creatorcontrib>King, Paul W</creatorcontrib><creatorcontrib>Peters, John W</creatorcontrib><creatorcontrib>Bothner, Brian</creatorcontrib><creatorcontrib>Miller, Anne-Frances</creatorcontrib><creatorcontrib>Adams, Michael W W</creatorcontrib><collection>PubMed</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schut, Gerrit J</au><au>Mohamed-Raseek, Nishya</au><au>Tokmina-Lukaszewska, Monika</au><au>Mulder, David W</au><au>Nguyen, Diep M N</au><au>Lipscomb, Gina L</au><au>Hoben, John P</au><au>Patterson, Angela</au><au>Lubner, Carolyn E</au><au>King, Paul W</au><au>Peters, John W</au><au>Bothner, Brian</au><au>Miller, Anne-Frances</au><au>Adams, Michael W W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>294</volume><issue>9</issue><spage>3271</spage><pages>3271-</pages><eissn>1083-351X</eissn><abstract>Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum. The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD
, we propose a catalytic cycle involving formation of an intermediary NAD
-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP
oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD
, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.</abstract><cop>United States</cop><pmid>33743959</pmid><doi>10.1074/jbc.RA118.005653</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1083-351X |
ispartof | The Journal of biological chemistry, 2019-03, Vol.294 (9), p.3271 |
issn | 1083-351X |
language | eng |
recordid | cdi_pubmed_primary_33743959 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
title | The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20catalytic%20mechanism%20of%20electron-bifurcating%20electron%20transfer%20flavoproteins%20(ETFs)%20involves%20an%20intermediary%20complex%20with%20NAD&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Schut,%20Gerrit%20J&rft.date=2019-03-01&rft.volume=294&rft.issue=9&rft.spage=3271&rft.pages=3271-&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.005653&rft_dat=%3Cpubmed%3E33743959%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33743959&rfr_iscdi=true |