Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s
High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2021-04, Vol.57 (3), p.3676-3679 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3679 |
---|---|
container_issue | 3 |
container_start_page | 3676 |
container_title | Chemical communications (Cambridge, England) |
container_volume | 57 |
creator | Leng, Yan Zhang, Zihao Chen, Hao Du, Shengyu Liu, Jixing Nie, Shiyang Dong, Yuming Zhang, Pengfei Dai, Sheng |
description | High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed
via
a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo
0.2
W
0.2
V
0.2
Cr
0.2
Nb
0.2
C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m
2
g
−1
), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (>100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks.
High-entropy metal carbide nanoparticles (Mo
0.2
W
0.2
V
0.2
Cr
0.2
Nb
0.2
C) have been synthesized by a Br-based poly(ionic liquid)-assisted assembly strategy, and exhibited unexpected activity and stability for the dehydrogenation of ethylbenzene with CO
2
. |
doi_str_mv | 10.1039/d1cc00497b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33725083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511881030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-673fda93457e14b18749a35ae44b499ebafd15e3dd433110fe521940eec495623</originalsourceid><addsrcrecordid>eNpd0UFLHTEQB_BQKtXaXnpvCfaihbWZTfKyOepr1YLgpYK3JZuddSO7mzXJtrxvb_SpheYygfwYJvMn5BOwY2Bcf2_BWsaEVs0bsgd8JQopqpu3j3epC8WF3CXvY7xj-YCs3pFdzlUpWcX3yM3VHwzWj266palHOvcmIo04m2CS8xP961LvJtq7277AKQU_b-iIyQzUmtC4FmmzobMfNodZO0sHd7-49ih-IDudGSJ-fK775Prs5-_1RXF5df5rfXJZWMFYKlaKd63ReUaFIBqolNCGS4NCNEJrbEzXgkTetoJzANahLEELhmiFlquS75ODbV8fk6ujdQltb_00oU01KAVlKTM63KI5-PsFY6pHFy0Og5nQL7HOyyhLJphQmX79j975JUz5C1kBVFVeOcvq21bZ4GMM2NVzcKMJmxpY_RhK_QPW66dQTjP-8txyaUZsX-lLChl83oIQ7evrv1T5A6Nkj2I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511881030</pqid></control><display><type>article</type><title>Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Leng, Yan ; Zhang, Zihao ; Chen, Hao ; Du, Shengyu ; Liu, Jixing ; Nie, Shiyang ; Dong, Yuming ; Zhang, Pengfei ; Dai, Sheng</creator><creatorcontrib>Leng, Yan ; Zhang, Zihao ; Chen, Hao ; Du, Shengyu ; Liu, Jixing ; Nie, Shiyang ; Dong, Yuming ; Zhang, Pengfei ; Dai, Sheng</creatorcontrib><description>High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed
via
a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo
0.2
W
0.2
V
0.2
Cr
0.2
Nb
0.2
C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m
2
g
−1
), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (>100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks.
High-entropy metal carbide nanoparticles (Mo
0.2
W
0.2
V
0.2
Cr
0.2
Nb
0.2
C) have been synthesized by a Br-based poly(ionic liquid)-assisted assembly strategy, and exhibited unexpected activity and stability for the dehydrogenation of ethylbenzene with CO
2
.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/d1cc00497b</identifier><identifier>PMID: 33725083</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysis ; Crystallization ; Dehydrogenation ; Energy value ; Entropy ; Ethylbenzene ; Free energy ; Ionic liquids ; Ions ; Metal carbides ; Metal ions ; Miscibility ; Nanoparticles ; Phase separation ; Solid phases ; Solid solutions ; Thermal stability</subject><ispartof>Chemical communications (Cambridge, England), 2021-04, Vol.57 (3), p.3676-3679</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-673fda93457e14b18749a35ae44b499ebafd15e3dd433110fe521940eec495623</citedby><cites>FETCH-LOGICAL-c400t-673fda93457e14b18749a35ae44b499ebafd15e3dd433110fe521940eec495623</cites><orcidid>0000-0002-2999-1325 ; 0000-0001-7559-7348 ; 0000-0003-4205-3744 ; 0000-0002-8046-3931 ; 0000-0001-5106-2656 ; 0000-0001-7618-0456 ; 0000000229991325 ; 0000000176180456 ; 0000000151062656 ; 0000000280463931 ; 0000000342053744 ; 0000000175597348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33725083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1771225$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leng, Yan</creatorcontrib><creatorcontrib>Zhang, Zihao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Du, Shengyu</creatorcontrib><creatorcontrib>Liu, Jixing</creatorcontrib><creatorcontrib>Nie, Shiyang</creatorcontrib><creatorcontrib>Dong, Yuming</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><title>Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed
via
a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo
0.2
W
0.2
V
0.2
Cr
0.2
Nb
0.2
C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m
2
g
−1
), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (>100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks.
High-entropy metal carbide nanoparticles (Mo
0.2
W
0.2
V
0.2
Cr
0.2
Nb
0.2
C) have been synthesized by a Br-based poly(ionic liquid)-assisted assembly strategy, and exhibited unexpected activity and stability for the dehydrogenation of ethylbenzene with CO
2
.</description><subject>Catalysis</subject><subject>Crystallization</subject><subject>Dehydrogenation</subject><subject>Energy value</subject><subject>Entropy</subject><subject>Ethylbenzene</subject><subject>Free energy</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Metal carbides</subject><subject>Metal ions</subject><subject>Miscibility</subject><subject>Nanoparticles</subject><subject>Phase separation</subject><subject>Solid phases</subject><subject>Solid solutions</subject><subject>Thermal stability</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0UFLHTEQB_BQKtXaXnpvCfaihbWZTfKyOepr1YLgpYK3JZuddSO7mzXJtrxvb_SpheYygfwYJvMn5BOwY2Bcf2_BWsaEVs0bsgd8JQopqpu3j3epC8WF3CXvY7xj-YCs3pFdzlUpWcX3yM3VHwzWj266palHOvcmIo04m2CS8xP961LvJtq7277AKQU_b-iIyQzUmtC4FmmzobMfNodZO0sHd7-49ih-IDudGSJ-fK775Prs5-_1RXF5df5rfXJZWMFYKlaKd63ReUaFIBqolNCGS4NCNEJrbEzXgkTetoJzANahLEELhmiFlquS75ODbV8fk6ujdQltb_00oU01KAVlKTM63KI5-PsFY6pHFy0Og5nQL7HOyyhLJphQmX79j975JUz5C1kBVFVeOcvq21bZ4GMM2NVzcKMJmxpY_RhK_QPW66dQTjP-8txyaUZsX-lLChl83oIQ7evrv1T5A6Nkj2I</recordid><startdate>20210418</startdate><enddate>20210418</enddate><creator>Leng, Yan</creator><creator>Zhang, Zihao</creator><creator>Chen, Hao</creator><creator>Du, Shengyu</creator><creator>Liu, Jixing</creator><creator>Nie, Shiyang</creator><creator>Dong, Yuming</creator><creator>Zhang, Pengfei</creator><creator>Dai, Sheng</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2999-1325</orcidid><orcidid>https://orcid.org/0000-0001-7559-7348</orcidid><orcidid>https://orcid.org/0000-0003-4205-3744</orcidid><orcidid>https://orcid.org/0000-0002-8046-3931</orcidid><orcidid>https://orcid.org/0000-0001-5106-2656</orcidid><orcidid>https://orcid.org/0000-0001-7618-0456</orcidid><orcidid>https://orcid.org/0000000229991325</orcidid><orcidid>https://orcid.org/0000000176180456</orcidid><orcidid>https://orcid.org/0000000151062656</orcidid><orcidid>https://orcid.org/0000000280463931</orcidid><orcidid>https://orcid.org/0000000342053744</orcidid><orcidid>https://orcid.org/0000000175597348</orcidid></search><sort><creationdate>20210418</creationdate><title>Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s</title><author>Leng, Yan ; Zhang, Zihao ; Chen, Hao ; Du, Shengyu ; Liu, Jixing ; Nie, Shiyang ; Dong, Yuming ; Zhang, Pengfei ; Dai, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-673fda93457e14b18749a35ae44b499ebafd15e3dd433110fe521940eec495623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Crystallization</topic><topic>Dehydrogenation</topic><topic>Energy value</topic><topic>Entropy</topic><topic>Ethylbenzene</topic><topic>Free energy</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Metal carbides</topic><topic>Metal ions</topic><topic>Miscibility</topic><topic>Nanoparticles</topic><topic>Phase separation</topic><topic>Solid phases</topic><topic>Solid solutions</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Yan</creatorcontrib><creatorcontrib>Zhang, Zihao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Du, Shengyu</creatorcontrib><creatorcontrib>Liu, Jixing</creatorcontrib><creatorcontrib>Nie, Shiyang</creatorcontrib><creatorcontrib>Dong, Yuming</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Yan</au><au>Zhang, Zihao</au><au>Chen, Hao</au><au>Du, Shengyu</au><au>Liu, Jixing</au><au>Nie, Shiyang</au><au>Dong, Yuming</au><au>Zhang, Pengfei</au><au>Dai, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2021-04-18</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>3676</spage><epage>3679</epage><pages>3676-3679</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed
via
a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo
0.2
W
0.2
V
0.2
Cr
0.2
Nb
0.2
C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m
2
g
−1
), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (>100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks.
High-entropy metal carbide nanoparticles (Mo
0.2
W
0.2
V
0.2
Cr
0.2
Nb
0.2
C) have been synthesized by a Br-based poly(ionic liquid)-assisted assembly strategy, and exhibited unexpected activity and stability for the dehydrogenation of ethylbenzene with CO
2
.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33725083</pmid><doi>10.1039/d1cc00497b</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2999-1325</orcidid><orcidid>https://orcid.org/0000-0001-7559-7348</orcidid><orcidid>https://orcid.org/0000-0003-4205-3744</orcidid><orcidid>https://orcid.org/0000-0002-8046-3931</orcidid><orcidid>https://orcid.org/0000-0001-5106-2656</orcidid><orcidid>https://orcid.org/0000-0001-7618-0456</orcidid><orcidid>https://orcid.org/0000000229991325</orcidid><orcidid>https://orcid.org/0000000176180456</orcidid><orcidid>https://orcid.org/0000000151062656</orcidid><orcidid>https://orcid.org/0000000280463931</orcidid><orcidid>https://orcid.org/0000000342053744</orcidid><orcidid>https://orcid.org/0000000175597348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-7345 |
ispartof | Chemical communications (Cambridge, England), 2021-04, Vol.57 (3), p.3676-3679 |
issn | 1359-7345 1364-548X |
language | eng |
recordid | cdi_pubmed_primary_33725083 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Catalysis Crystallization Dehydrogenation Energy value Entropy Ethylbenzene Free energy Ionic liquids Ions Metal carbides Metal ions Miscibility Nanoparticles Phase separation Solid phases Solid solutions Thermal stability |
title | Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20the%20phase%20separation%20within%20high-entropy%20metal%20carbide%20by%20poly(ionic%20liquid)s&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Leng,%20Yan&rft.date=2021-04-18&rft.volume=57&rft.issue=3&rft.spage=3676&rft.epage=3679&rft.pages=3676-3679&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/d1cc00497b&rft_dat=%3Cproquest_pubme%3E2511881030%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511881030&rft_id=info:pmid/33725083&rfr_iscdi=true |