Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s

High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2021-04, Vol.57 (3), p.3676-3679
Hauptverfasser: Leng, Yan, Zhang, Zihao, Chen, Hao, Du, Shengyu, Liu, Jixing, Nie, Shiyang, Dong, Yuming, Zhang, Pengfei, Dai, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3679
container_issue 3
container_start_page 3676
container_title Chemical communications (Cambridge, England)
container_volume 57
creator Leng, Yan
Zhang, Zihao
Chen, Hao
Du, Shengyu
Liu, Jixing
Nie, Shiyang
Dong, Yuming
Zhang, Pengfei
Dai, Sheng
description High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed via a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo 0.2 W 0.2 V 0.2 Cr 0.2 Nb 0.2 C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m 2 g −1 ), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (>100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks. High-entropy metal carbide nanoparticles (Mo 0.2 W 0.2 V 0.2 Cr 0.2 Nb 0.2 C) have been synthesized by a Br-based poly(ionic liquid)-assisted assembly strategy, and exhibited unexpected activity and stability for the dehydrogenation of ethylbenzene with CO 2 .
doi_str_mv 10.1039/d1cc00497b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33725083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511881030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-673fda93457e14b18749a35ae44b499ebafd15e3dd433110fe521940eec495623</originalsourceid><addsrcrecordid>eNpd0UFLHTEQB_BQKtXaXnpvCfaihbWZTfKyOepr1YLgpYK3JZuddSO7mzXJtrxvb_SpheYygfwYJvMn5BOwY2Bcf2_BWsaEVs0bsgd8JQopqpu3j3epC8WF3CXvY7xj-YCs3pFdzlUpWcX3yM3VHwzWj266palHOvcmIo04m2CS8xP961LvJtq7277AKQU_b-iIyQzUmtC4FmmzobMfNodZO0sHd7-49ih-IDudGSJ-fK775Prs5-_1RXF5df5rfXJZWMFYKlaKd63ReUaFIBqolNCGS4NCNEJrbEzXgkTetoJzANahLEELhmiFlquS75ODbV8fk6ujdQltb_00oU01KAVlKTM63KI5-PsFY6pHFy0Og5nQL7HOyyhLJphQmX79j975JUz5C1kBVFVeOcvq21bZ4GMM2NVzcKMJmxpY_RhK_QPW66dQTjP-8txyaUZsX-lLChl83oIQ7evrv1T5A6Nkj2I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511881030</pqid></control><display><type>article</type><title>Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Leng, Yan ; Zhang, Zihao ; Chen, Hao ; Du, Shengyu ; Liu, Jixing ; Nie, Shiyang ; Dong, Yuming ; Zhang, Pengfei ; Dai, Sheng</creator><creatorcontrib>Leng, Yan ; Zhang, Zihao ; Chen, Hao ; Du, Shengyu ; Liu, Jixing ; Nie, Shiyang ; Dong, Yuming ; Zhang, Pengfei ; Dai, Sheng</creatorcontrib><description>High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed via a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo 0.2 W 0.2 V 0.2 Cr 0.2 Nb 0.2 C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m 2 g −1 ), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (&gt;100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks. High-entropy metal carbide nanoparticles (Mo 0.2 W 0.2 V 0.2 Cr 0.2 Nb 0.2 C) have been synthesized by a Br-based poly(ionic liquid)-assisted assembly strategy, and exhibited unexpected activity and stability for the dehydrogenation of ethylbenzene with CO 2 .</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/d1cc00497b</identifier><identifier>PMID: 33725083</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysis ; Crystallization ; Dehydrogenation ; Energy value ; Entropy ; Ethylbenzene ; Free energy ; Ionic liquids ; Ions ; Metal carbides ; Metal ions ; Miscibility ; Nanoparticles ; Phase separation ; Solid phases ; Solid solutions ; Thermal stability</subject><ispartof>Chemical communications (Cambridge, England), 2021-04, Vol.57 (3), p.3676-3679</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-673fda93457e14b18749a35ae44b499ebafd15e3dd433110fe521940eec495623</citedby><cites>FETCH-LOGICAL-c400t-673fda93457e14b18749a35ae44b499ebafd15e3dd433110fe521940eec495623</cites><orcidid>0000-0002-2999-1325 ; 0000-0001-7559-7348 ; 0000-0003-4205-3744 ; 0000-0002-8046-3931 ; 0000-0001-5106-2656 ; 0000-0001-7618-0456 ; 0000000229991325 ; 0000000176180456 ; 0000000151062656 ; 0000000280463931 ; 0000000342053744 ; 0000000175597348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33725083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1771225$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leng, Yan</creatorcontrib><creatorcontrib>Zhang, Zihao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Du, Shengyu</creatorcontrib><creatorcontrib>Liu, Jixing</creatorcontrib><creatorcontrib>Nie, Shiyang</creatorcontrib><creatorcontrib>Dong, Yuming</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><title>Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed via a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo 0.2 W 0.2 V 0.2 Cr 0.2 Nb 0.2 C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m 2 g −1 ), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (&gt;100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks. High-entropy metal carbide nanoparticles (Mo 0.2 W 0.2 V 0.2 Cr 0.2 Nb 0.2 C) have been synthesized by a Br-based poly(ionic liquid)-assisted assembly strategy, and exhibited unexpected activity and stability for the dehydrogenation of ethylbenzene with CO 2 .</description><subject>Catalysis</subject><subject>Crystallization</subject><subject>Dehydrogenation</subject><subject>Energy value</subject><subject>Entropy</subject><subject>Ethylbenzene</subject><subject>Free energy</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Metal carbides</subject><subject>Metal ions</subject><subject>Miscibility</subject><subject>Nanoparticles</subject><subject>Phase separation</subject><subject>Solid phases</subject><subject>Solid solutions</subject><subject>Thermal stability</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0UFLHTEQB_BQKtXaXnpvCfaihbWZTfKyOepr1YLgpYK3JZuddSO7mzXJtrxvb_SpheYygfwYJvMn5BOwY2Bcf2_BWsaEVs0bsgd8JQopqpu3j3epC8WF3CXvY7xj-YCs3pFdzlUpWcX3yM3VHwzWj266palHOvcmIo04m2CS8xP961LvJtq7277AKQU_b-iIyQzUmtC4FmmzobMfNodZO0sHd7-49ih-IDudGSJ-fK775Prs5-_1RXF5df5rfXJZWMFYKlaKd63ReUaFIBqolNCGS4NCNEJrbEzXgkTetoJzANahLEELhmiFlquS75ODbV8fk6ujdQltb_00oU01KAVlKTM63KI5-PsFY6pHFy0Og5nQL7HOyyhLJphQmX79j975JUz5C1kBVFVeOcvq21bZ4GMM2NVzcKMJmxpY_RhK_QPW66dQTjP-8txyaUZsX-lLChl83oIQ7evrv1T5A6Nkj2I</recordid><startdate>20210418</startdate><enddate>20210418</enddate><creator>Leng, Yan</creator><creator>Zhang, Zihao</creator><creator>Chen, Hao</creator><creator>Du, Shengyu</creator><creator>Liu, Jixing</creator><creator>Nie, Shiyang</creator><creator>Dong, Yuming</creator><creator>Zhang, Pengfei</creator><creator>Dai, Sheng</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2999-1325</orcidid><orcidid>https://orcid.org/0000-0001-7559-7348</orcidid><orcidid>https://orcid.org/0000-0003-4205-3744</orcidid><orcidid>https://orcid.org/0000-0002-8046-3931</orcidid><orcidid>https://orcid.org/0000-0001-5106-2656</orcidid><orcidid>https://orcid.org/0000-0001-7618-0456</orcidid><orcidid>https://orcid.org/0000000229991325</orcidid><orcidid>https://orcid.org/0000000176180456</orcidid><orcidid>https://orcid.org/0000000151062656</orcidid><orcidid>https://orcid.org/0000000280463931</orcidid><orcidid>https://orcid.org/0000000342053744</orcidid><orcidid>https://orcid.org/0000000175597348</orcidid></search><sort><creationdate>20210418</creationdate><title>Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s</title><author>Leng, Yan ; Zhang, Zihao ; Chen, Hao ; Du, Shengyu ; Liu, Jixing ; Nie, Shiyang ; Dong, Yuming ; Zhang, Pengfei ; Dai, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-673fda93457e14b18749a35ae44b499ebafd15e3dd433110fe521940eec495623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Crystallization</topic><topic>Dehydrogenation</topic><topic>Energy value</topic><topic>Entropy</topic><topic>Ethylbenzene</topic><topic>Free energy</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Metal carbides</topic><topic>Metal ions</topic><topic>Miscibility</topic><topic>Nanoparticles</topic><topic>Phase separation</topic><topic>Solid phases</topic><topic>Solid solutions</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Yan</creatorcontrib><creatorcontrib>Zhang, Zihao</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Du, Shengyu</creatorcontrib><creatorcontrib>Liu, Jixing</creatorcontrib><creatorcontrib>Nie, Shiyang</creatorcontrib><creatorcontrib>Dong, Yuming</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Yan</au><au>Zhang, Zihao</au><au>Chen, Hao</au><au>Du, Shengyu</au><au>Liu, Jixing</au><au>Nie, Shiyang</au><au>Dong, Yuming</au><au>Zhang, Pengfei</au><au>Dai, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2021-04-18</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>3676</spage><epage>3679</epage><pages>3676-3679</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed via a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo 0.2 W 0.2 V 0.2 Cr 0.2 Nb 0.2 C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m 2 g −1 ), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (&gt;100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks. High-entropy metal carbide nanoparticles (Mo 0.2 W 0.2 V 0.2 Cr 0.2 Nb 0.2 C) have been synthesized by a Br-based poly(ionic liquid)-assisted assembly strategy, and exhibited unexpected activity and stability for the dehydrogenation of ethylbenzene with CO 2 .</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33725083</pmid><doi>10.1039/d1cc00497b</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2999-1325</orcidid><orcidid>https://orcid.org/0000-0001-7559-7348</orcidid><orcidid>https://orcid.org/0000-0003-4205-3744</orcidid><orcidid>https://orcid.org/0000-0002-8046-3931</orcidid><orcidid>https://orcid.org/0000-0001-5106-2656</orcidid><orcidid>https://orcid.org/0000-0001-7618-0456</orcidid><orcidid>https://orcid.org/0000000229991325</orcidid><orcidid>https://orcid.org/0000000176180456</orcidid><orcidid>https://orcid.org/0000000151062656</orcidid><orcidid>https://orcid.org/0000000280463931</orcidid><orcidid>https://orcid.org/0000000342053744</orcidid><orcidid>https://orcid.org/0000000175597348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2021-04, Vol.57 (3), p.3676-3679
issn 1359-7345
1364-548X
language eng
recordid cdi_pubmed_primary_33725083
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Catalysis
Crystallization
Dehydrogenation
Energy value
Entropy
Ethylbenzene
Free energy
Ionic liquids
Ions
Metal carbides
Metal ions
Miscibility
Nanoparticles
Phase separation
Solid phases
Solid solutions
Thermal stability
title Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20the%20phase%20separation%20within%20high-entropy%20metal%20carbide%20by%20poly(ionic%20liquid)s&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Leng,%20Yan&rft.date=2021-04-18&rft.volume=57&rft.issue=3&rft.spage=3676&rft.epage=3679&rft.pages=3676-3679&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/d1cc00497b&rft_dat=%3Cproquest_pubme%3E2511881030%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511881030&rft_id=info:pmid/33725083&rfr_iscdi=true