Novel powder processing technologies for production of rare-earth permanent magnets
Post-neodymium magnets that possess high heat resistance, coercivity, and (BH) max are desired for future-generation motors. However, the candidate materials for post-neodymium magnets such as Sm 2 Fe 17 N 3 and metastable magnetic alloys have certain process-related problems: low sinterability due...
Gespeichert in:
Veröffentlicht in: | Science and technology of advanced materials 2021-03, Vol.22 (1), p.150-159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 1 |
container_start_page | 150 |
container_title | Science and technology of advanced materials |
container_volume | 22 |
creator | Takagi, Kenta Hirayama, Yusuke Okada, Shusuke Yamaguchi, Wataru Ozaki, Kimihiro |
description | Post-neodymium magnets that possess high heat resistance, coercivity, and (BH)
max
are desired for future-generation motors. However, the candidate materials for post-neodymium magnets such as Sm
2
Fe
17
N
3
and metastable magnetic alloys have certain process-related problems: low sinterability due to thermal decomposition at elevated temperatures, deterioration of coercivity during sintering, and the poor coercivity of the raw powder. Various developments in powder processing are underway with the aim of overcoming these problems. So far, the development of advanced powder metallurgy techniques has achieved Sm
2
Fe
17
N
3
anisotropic sintered magnets without coercivity deterioration, and advances in chemical powder synthesis techniques have been successful in producing Sm
2
Fe
17
N
3
fine powders with huge coercivity. The challenge of a new powder process is expected to open the way to realizing post-neodymium magnets. |
doi_str_mv | 10.1080/14686996.2021.1875791 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33716571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f8efc1ae30ff43e797882f6f27dcf711</doaj_id><sourcerecordid>2501480168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-5bf99621dd14ef48dd32fd931423f9cede7e35b0cfa4ff56578e84fd3fcfd27d3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqXwEUA5csni8Z_YuSBQVaBSBQfgbHntmWyqJF7sbKt-e7zdbUUvnDzyvPnNs19VvQW2AmbYB5CtabuuXXHGYQVGK93Bs-q0VKZRCuTzUhdNsxedVK9yvmaMtcDly-pECA2t0nBa_fweb3Cst_E2YKq3KXrMeZj7ekG_meMY-wFzTfG-F3Z-GeJcR6qTS9igS8um3mKa3IzzUk-un3HJr6sX5MaMb47nWfX7y8Wv82_N1Y-vl-efrxrfMrY0ak3FGocQQCJJE4LgFDoBkgvqPAbUKNSaeXKSSBW_Bo2kIMhT4DqIs-rywA3RXdttGiaX7mx0g72_iKm3xeDgR7RkkDw4FIxICtSdNoZTSwXjSQMU1scDa7tbTxh8eU5y4xPo0848bGwfb6zuhAIuCuD9EZDinx3mxU5D9jiO5WviLluuGEjDoDVFqg5Sn2LOCelxDTC7D9c-hGv34dpjuGXu3b8eH6ce0iyCTwfBMJfEJncb0xjs4u7GmCi52Q_Ziv_v-AvRt7do</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501480168</pqid></control><display><type>article</type><title>Novel powder processing technologies for production of rare-earth permanent magnets</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Takagi, Kenta ; Hirayama, Yusuke ; Okada, Shusuke ; Yamaguchi, Wataru ; Ozaki, Kimihiro</creator><creatorcontrib>Takagi, Kenta ; Hirayama, Yusuke ; Okada, Shusuke ; Yamaguchi, Wataru ; Ozaki, Kimihiro</creatorcontrib><description>Post-neodymium magnets that possess high heat resistance, coercivity, and (BH)
max
are desired for future-generation motors. However, the candidate materials for post-neodymium magnets such as Sm
2
Fe
17
N
3
and metastable magnetic alloys have certain process-related problems: low sinterability due to thermal decomposition at elevated temperatures, deterioration of coercivity during sintering, and the poor coercivity of the raw powder. Various developments in powder processing are underway with the aim of overcoming these problems. So far, the development of advanced powder metallurgy techniques has achieved Sm
2
Fe
17
N
3
anisotropic sintered magnets without coercivity deterioration, and advances in chemical powder synthesis techniques have been successful in producing Sm
2
Fe
17
N
3
fine powders with huge coercivity. The challenge of a new powder process is expected to open the way to realizing post-neodymium magnets.</description><identifier>ISSN: 1468-6996</identifier><identifier>EISSN: 1878-5514</identifier><identifier>DOI: 10.1080/14686996.2021.1875791</identifier><identifier>PMID: 33716571</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>203 Magnetics ; 304 Powder processing ; coercivity ; Focus Issue: Science and Technology of Element-Strategic Permanent Magnets ; Other ; powder synthesis ; Rare-earth permanent magnets ; sintering ; sm2fe17n3 ; Spintronics ; Superconductors</subject><ispartof>Science and technology of advanced materials, 2021-03, Vol.22 (1), p.150-159</ispartof><rights>2021 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group. 2021</rights><rights>2021 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.</rights><rights>2021 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group. 2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-5bf99621dd14ef48dd32fd931423f9cede7e35b0cfa4ff56578e84fd3fcfd27d3</citedby><cites>FETCH-LOGICAL-c600t-5bf99621dd14ef48dd32fd931423f9cede7e35b0cfa4ff56578e84fd3fcfd27d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,27500,27922,27923,53789,53791,59141,59142</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33716571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagi, Kenta</creatorcontrib><creatorcontrib>Hirayama, Yusuke</creatorcontrib><creatorcontrib>Okada, Shusuke</creatorcontrib><creatorcontrib>Yamaguchi, Wataru</creatorcontrib><creatorcontrib>Ozaki, Kimihiro</creatorcontrib><title>Novel powder processing technologies for production of rare-earth permanent magnets</title><title>Science and technology of advanced materials</title><addtitle>Sci Technol Adv Mater</addtitle><description>Post-neodymium magnets that possess high heat resistance, coercivity, and (BH)
max
are desired for future-generation motors. However, the candidate materials for post-neodymium magnets such as Sm
2
Fe
17
N
3
and metastable magnetic alloys have certain process-related problems: low sinterability due to thermal decomposition at elevated temperatures, deterioration of coercivity during sintering, and the poor coercivity of the raw powder. Various developments in powder processing are underway with the aim of overcoming these problems. So far, the development of advanced powder metallurgy techniques has achieved Sm
2
Fe
17
N
3
anisotropic sintered magnets without coercivity deterioration, and advances in chemical powder synthesis techniques have been successful in producing Sm
2
Fe
17
N
3
fine powders with huge coercivity. The challenge of a new powder process is expected to open the way to realizing post-neodymium magnets.</description><subject>203 Magnetics</subject><subject>304 Powder processing</subject><subject>coercivity</subject><subject>Focus Issue: Science and Technology of Element-Strategic Permanent Magnets</subject><subject>Other</subject><subject>powder synthesis</subject><subject>Rare-earth permanent magnets</subject><subject>sintering</subject><subject>sm2fe17n3</subject><subject>Spintronics</subject><subject>Superconductors</subject><issn>1468-6996</issn><issn>1878-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEoqXwEUA5csni8Z_YuSBQVaBSBQfgbHntmWyqJF7sbKt-e7zdbUUvnDzyvPnNs19VvQW2AmbYB5CtabuuXXHGYQVGK93Bs-q0VKZRCuTzUhdNsxedVK9yvmaMtcDly-pECA2t0nBa_fweb3Cst_E2YKq3KXrMeZj7ekG_meMY-wFzTfG-F3Z-GeJcR6qTS9igS8um3mKa3IzzUk-un3HJr6sX5MaMb47nWfX7y8Wv82_N1Y-vl-efrxrfMrY0ak3FGocQQCJJE4LgFDoBkgvqPAbUKNSaeXKSSBW_Bo2kIMhT4DqIs-rywA3RXdttGiaX7mx0g72_iKm3xeDgR7RkkDw4FIxICtSdNoZTSwXjSQMU1scDa7tbTxh8eU5y4xPo0848bGwfb6zuhAIuCuD9EZDinx3mxU5D9jiO5WviLluuGEjDoDVFqg5Sn2LOCelxDTC7D9c-hGv34dpjuGXu3b8eH6ce0iyCTwfBMJfEJncb0xjs4u7GmCi52Q_Ziv_v-AvRt7do</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Takagi, Kenta</creator><creator>Hirayama, Yusuke</creator><creator>Okada, Shusuke</creator><creator>Yamaguchi, Wataru</creator><creator>Ozaki, Kimihiro</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210303</creationdate><title>Novel powder processing technologies for production of rare-earth permanent magnets</title><author>Takagi, Kenta ; Hirayama, Yusuke ; Okada, Shusuke ; Yamaguchi, Wataru ; Ozaki, Kimihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-5bf99621dd14ef48dd32fd931423f9cede7e35b0cfa4ff56578e84fd3fcfd27d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>203 Magnetics</topic><topic>304 Powder processing</topic><topic>coercivity</topic><topic>Focus Issue: Science and Technology of Element-Strategic Permanent Magnets</topic><topic>Other</topic><topic>powder synthesis</topic><topic>Rare-earth permanent magnets</topic><topic>sintering</topic><topic>sm2fe17n3</topic><topic>Spintronics</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagi, Kenta</creatorcontrib><creatorcontrib>Hirayama, Yusuke</creatorcontrib><creatorcontrib>Okada, Shusuke</creatorcontrib><creatorcontrib>Yamaguchi, Wataru</creatorcontrib><creatorcontrib>Ozaki, Kimihiro</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of advanced materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagi, Kenta</au><au>Hirayama, Yusuke</au><au>Okada, Shusuke</au><au>Yamaguchi, Wataru</au><au>Ozaki, Kimihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel powder processing technologies for production of rare-earth permanent magnets</atitle><jtitle>Science and technology of advanced materials</jtitle><addtitle>Sci Technol Adv Mater</addtitle><date>2021-03-03</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>150</spage><epage>159</epage><pages>150-159</pages><issn>1468-6996</issn><eissn>1878-5514</eissn><abstract>Post-neodymium magnets that possess high heat resistance, coercivity, and (BH)
max
are desired for future-generation motors. However, the candidate materials for post-neodymium magnets such as Sm
2
Fe
17
N
3
and metastable magnetic alloys have certain process-related problems: low sinterability due to thermal decomposition at elevated temperatures, deterioration of coercivity during sintering, and the poor coercivity of the raw powder. Various developments in powder processing are underway with the aim of overcoming these problems. So far, the development of advanced powder metallurgy techniques has achieved Sm
2
Fe
17
N
3
anisotropic sintered magnets without coercivity deterioration, and advances in chemical powder synthesis techniques have been successful in producing Sm
2
Fe
17
N
3
fine powders with huge coercivity. The challenge of a new powder process is expected to open the way to realizing post-neodymium magnets.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>33716571</pmid><doi>10.1080/14686996.2021.1875791</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-6996 |
ispartof | Science and technology of advanced materials, 2021-03, Vol.22 (1), p.150-159 |
issn | 1468-6996 1878-5514 |
language | eng |
recordid | cdi_pubmed_primary_33716571 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 203 Magnetics 304 Powder processing coercivity Focus Issue: Science and Technology of Element-Strategic Permanent Magnets Other powder synthesis Rare-earth permanent magnets sintering sm2fe17n3 Spintronics Superconductors |
title | Novel powder processing technologies for production of rare-earth permanent magnets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20powder%20processing%20technologies%20for%20production%20of%20rare-earth%20permanent%20magnets&rft.jtitle=Science%20and%20technology%20of%20advanced%20materials&rft.au=Takagi,%20Kenta&rft.date=2021-03-03&rft.volume=22&rft.issue=1&rft.spage=150&rft.epage=159&rft.pages=150-159&rft.issn=1468-6996&rft.eissn=1878-5514&rft_id=info:doi/10.1080/14686996.2021.1875791&rft_dat=%3Cproquest_pubme%3E2501480168%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501480168&rft_id=info:pmid/33716571&rft_doaj_id=oai_doaj_org_article_f8efc1ae30ff43e797882f6f27dcf711&rfr_iscdi=true |