Empowering individual trait prediction using interactions for precision medicine
BackgroundOne component of precision medicine is to construct prediction models with their predicitve ability as high as possible, e.g. to enable individual risk prediction. In genetic epidemiology, complex diseases like coronary artery disease, rheumatoid arthritis, and type 2 diabetes, have a poly...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2021-02, Vol.22 (1), p.74-74, Article 74 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 74 |
container_title | BMC bioinformatics |
container_volume | 22 |
creator | Gola, Damian Konig, Inke R. |
description | BackgroundOne component of precision medicine is to construct prediction models with their predicitve ability as high as possible, e.g. to enable individual risk prediction. In genetic epidemiology, complex diseases like coronary artery disease, rheumatoid arthritis, and type 2 diabetes, have a polygenic basis and a common assumption is that biological and genetic features affect the outcome under consideration via interactions. In the case of omics data, the use of standard approaches such as generalized linear models may be suboptimal and machine learning methods are appealing to make individual predictions. However, most of these algorithms focus mostly on main or marginal effects of the single features in a dataset. On the other hand, the detection of interacting features is an active area of research in the realm of genetic epidemiology. One big class of algorithms to detect interacting features is based on the multifactor dimensionality reduction (MDR). Here, we further develop the model-based MDR (MB-MDR), a powerful extension of the original MDR algorithm, to enable interaction empowered individual prediction.ResultsUsing a comprehensive simulation study we show that our new algorithm (median AUC: 0.66) can use information hidden in interactions and outperforms two other state-of-the-art algorithms, namely the Random Forest (median AUC: 0.54) and Elastic Net (median AUC: 0.50), if interactions are present in a scenario of two pairs of two features having small effects. The performance of these algorithms is comparable if no interactions are present. Further, we show that our new algorithm is applicable to real data by comparing the performance of the three algorithms on a dataset of rheumatoid arthritis cases and healthy controls. As our new algorithm is not only applicable to biological/genetic data but to all datasets with discrete features, it may have practical implications in other research fields where interactions between features have to be considered as well, and we made our method available as an R package (https://github.com/imbs-hl/MBMDRClassifieR).ConclusionsThe explicit use of interactions between features can improve the prediction performance and thus should be included in further attempts to move precision medicine forward. |
doi_str_mv | 10.1186/s12859-021-04011-z |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33602124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653618477</galeid><doaj_id>oai_doaj_org_article_523d1019b0944ab8a5626b394a255052</doaj_id><sourcerecordid>A653618477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-2f6b5e5b65538852b607d88c75cea66f81b31e72b2b62caa0a39686fef01f5d83</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7jr6BXyQAV8U6XqTNGnyIizDqgMLin-eQ5qmNUMnGZN0V_fTm07XcUd8sIWm3Ps7p72XUxRPEZwhxNnriDCnogSMSqgAofLmXnGKqhqVGAG9f-f9pHgU4wYA1Rzow-KEEJZVuDotPl5sd_7aBOv6pXWtvbLtqIZlCsqm5S6Y1upkvVuOcSaSCWpficvOh4nQNk7AdkKtM4-LB50aonlyey6Kr28vvqzel5cf3q1X55elpqJOJe5YQw1tGKWEc4obBnXLua6pNoqxjqOGIFPjJnewVgoUEYyzznSAOtpysijWs2_r1Ubugt2q8FN6ZeW-4EMvVUhWD0ZSTFoESDQgqko1XFGGWUNEpTClkLuL4s3stRubPIc2Ls8_HJked5z9Jnt_JWsugJHpZ17cGgT_fTQxya2N2gyDcsaPUeJKIEGhrlBGn_-FbvwYXF7VRIFA0_MP1as8gHWdz9_Vk6k8Z5QwxKu6ztTZP6h8t2ZrtXems7l-JHh5JMhMMj9Sr8YY5frzp2MWz6wOPsZgusM-EMgpf3LOn8xJkvv8yZssenZ3kwfJ78BlgM_AtWl8F7U1TpsDBgAMg8AMpgutbFJT1lZ-dClLX_2_lPwClbX0jQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490912490</pqid></control><display><type>article</type><title>Empowering individual trait prediction using interactions for precision medicine</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Gola, Damian ; Konig, Inke R.</creator><creatorcontrib>Gola, Damian ; Konig, Inke R.</creatorcontrib><description>BackgroundOne component of precision medicine is to construct prediction models with their predicitve ability as high as possible, e.g. to enable individual risk prediction. In genetic epidemiology, complex diseases like coronary artery disease, rheumatoid arthritis, and type 2 diabetes, have a polygenic basis and a common assumption is that biological and genetic features affect the outcome under consideration via interactions. In the case of omics data, the use of standard approaches such as generalized linear models may be suboptimal and machine learning methods are appealing to make individual predictions. However, most of these algorithms focus mostly on main or marginal effects of the single features in a dataset. On the other hand, the detection of interacting features is an active area of research in the realm of genetic epidemiology. One big class of algorithms to detect interacting features is based on the multifactor dimensionality reduction (MDR). Here, we further develop the model-based MDR (MB-MDR), a powerful extension of the original MDR algorithm, to enable interaction empowered individual prediction.ResultsUsing a comprehensive simulation study we show that our new algorithm (median AUC: 0.66) can use information hidden in interactions and outperforms two other state-of-the-art algorithms, namely the Random Forest (median AUC: 0.54) and Elastic Net (median AUC: 0.50), if interactions are present in a scenario of two pairs of two features having small effects. The performance of these algorithms is comparable if no interactions are present. Further, we show that our new algorithm is applicable to real data by comparing the performance of the three algorithms on a dataset of rheumatoid arthritis cases and healthy controls. As our new algorithm is not only applicable to biological/genetic data but to all datasets with discrete features, it may have practical implications in other research fields where interactions between features have to be considered as well, and we made our method available as an R package (https://github.com/imbs-hl/MBMDRClassifieR).ConclusionsThe explicit use of interactions between features can improve the prediction performance and thus should be included in further attempts to move precision medicine forward.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-021-04011-z</identifier><identifier>PMID: 33602124</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Algorithms ; Arthritis ; Autoimmune diseases ; Biochemical Research Methods ; Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Cardiovascular disease ; Classification ; Coronary artery ; Coronary artery disease ; Datasets ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - epidemiology ; Diabetes Mellitus, Type 2 - genetics ; Epidemiology ; Generalized linear models ; Genetic aspects ; Heart diseases ; Humans ; Interactions ; Learning algorithms ; Life Sciences & Biomedicine ; Machine Learning ; Mathematical & Computational Biology ; Medical genetics ; Methodology ; Multifactor Dimensionality Reduction ; Polygenic inheritance ; Power, Psychological ; Precision Medicine ; Prediction ; Prediction models ; Rheumatoid arthritis ; Risk factors ; Science & Technology ; Simulation ; Statistical models ; Technology application</subject><ispartof>BMC bioinformatics, 2021-02, Vol.22 (1), p.74-74, Article 74</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000620926000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c597t-2f6b5e5b65538852b607d88c75cea66f81b31e72b2b62caa0a39686fef01f5d83</citedby><cites>FETCH-LOGICAL-c597t-2f6b5e5b65538852b607d88c75cea66f81b31e72b2b62caa0a39686fef01f5d83</cites><orcidid>0000-0003-0504-6465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890638/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890638/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33602124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gola, Damian</creatorcontrib><creatorcontrib>Konig, Inke R.</creatorcontrib><title>Empowering individual trait prediction using interactions for precision medicine</title><title>BMC bioinformatics</title><addtitle>BMC BIOINFORMATICS</addtitle><addtitle>BMC Bioinformatics</addtitle><description>BackgroundOne component of precision medicine is to construct prediction models with their predicitve ability as high as possible, e.g. to enable individual risk prediction. In genetic epidemiology, complex diseases like coronary artery disease, rheumatoid arthritis, and type 2 diabetes, have a polygenic basis and a common assumption is that biological and genetic features affect the outcome under consideration via interactions. In the case of omics data, the use of standard approaches such as generalized linear models may be suboptimal and machine learning methods are appealing to make individual predictions. However, most of these algorithms focus mostly on main or marginal effects of the single features in a dataset. On the other hand, the detection of interacting features is an active area of research in the realm of genetic epidemiology. One big class of algorithms to detect interacting features is based on the multifactor dimensionality reduction (MDR). Here, we further develop the model-based MDR (MB-MDR), a powerful extension of the original MDR algorithm, to enable interaction empowered individual prediction.ResultsUsing a comprehensive simulation study we show that our new algorithm (median AUC: 0.66) can use information hidden in interactions and outperforms two other state-of-the-art algorithms, namely the Random Forest (median AUC: 0.54) and Elastic Net (median AUC: 0.50), if interactions are present in a scenario of two pairs of two features having small effects. The performance of these algorithms is comparable if no interactions are present. Further, we show that our new algorithm is applicable to real data by comparing the performance of the three algorithms on a dataset of rheumatoid arthritis cases and healthy controls. As our new algorithm is not only applicable to biological/genetic data but to all datasets with discrete features, it may have practical implications in other research fields where interactions between features have to be considered as well, and we made our method available as an R package (https://github.com/imbs-hl/MBMDRClassifieR).ConclusionsThe explicit use of interactions between features can improve the prediction performance and thus should be included in further attempts to move precision medicine forward.</description><subject>Algorithms</subject><subject>Arthritis</subject><subject>Autoimmune diseases</subject><subject>Biochemical Research Methods</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biotechnology & Applied Microbiology</subject><subject>Cardiovascular disease</subject><subject>Classification</subject><subject>Coronary artery</subject><subject>Coronary artery disease</subject><subject>Datasets</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Epidemiology</subject><subject>Generalized linear models</subject><subject>Genetic aspects</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Interactions</subject><subject>Learning algorithms</subject><subject>Life Sciences & Biomedicine</subject><subject>Machine Learning</subject><subject>Mathematical & Computational Biology</subject><subject>Medical genetics</subject><subject>Methodology</subject><subject>Multifactor Dimensionality Reduction</subject><subject>Polygenic inheritance</subject><subject>Power, Psychological</subject><subject>Precision Medicine</subject><subject>Prediction</subject><subject>Prediction models</subject><subject>Rheumatoid arthritis</subject><subject>Risk factors</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Statistical models</subject><subject>Technology application</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7jr6BXyQAV8U6XqTNGnyIizDqgMLin-eQ5qmNUMnGZN0V_fTm07XcUd8sIWm3Ps7p72XUxRPEZwhxNnriDCnogSMSqgAofLmXnGKqhqVGAG9f-f9pHgU4wYA1Rzow-KEEJZVuDotPl5sd_7aBOv6pXWtvbLtqIZlCsqm5S6Y1upkvVuOcSaSCWpficvOh4nQNk7AdkKtM4-LB50aonlyey6Kr28vvqzel5cf3q1X55elpqJOJe5YQw1tGKWEc4obBnXLua6pNoqxjqOGIFPjJnewVgoUEYyzznSAOtpysijWs2_r1Ubugt2q8FN6ZeW-4EMvVUhWD0ZSTFoESDQgqko1XFGGWUNEpTClkLuL4s3stRubPIc2Ls8_HJked5z9Jnt_JWsugJHpZ17cGgT_fTQxya2N2gyDcsaPUeJKIEGhrlBGn_-FbvwYXF7VRIFA0_MP1as8gHWdz9_Vk6k8Z5QwxKu6ztTZP6h8t2ZrtXems7l-JHh5JMhMMj9Sr8YY5frzp2MWz6wOPsZgusM-EMgpf3LOn8xJkvv8yZssenZ3kwfJ78BlgM_AtWl8F7U1TpsDBgAMg8AMpgutbFJT1lZ-dClLX_2_lPwClbX0jQ</recordid><startdate>20210218</startdate><enddate>20210218</enddate><creator>Gola, Damian</creator><creator>Konig, Inke R.</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0504-6465</orcidid></search><sort><creationdate>20210218</creationdate><title>Empowering individual trait prediction using interactions for precision medicine</title><author>Gola, Damian ; Konig, Inke R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-2f6b5e5b65538852b607d88c75cea66f81b31e72b2b62caa0a39686fef01f5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arthritis</topic><topic>Autoimmune diseases</topic><topic>Biochemical Research Methods</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biotechnology & Applied Microbiology</topic><topic>Cardiovascular disease</topic><topic>Classification</topic><topic>Coronary artery</topic><topic>Coronary artery disease</topic><topic>Datasets</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Epidemiology</topic><topic>Generalized linear models</topic><topic>Genetic aspects</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Interactions</topic><topic>Learning algorithms</topic><topic>Life Sciences & Biomedicine</topic><topic>Machine Learning</topic><topic>Mathematical & Computational Biology</topic><topic>Medical genetics</topic><topic>Methodology</topic><topic>Multifactor Dimensionality Reduction</topic><topic>Polygenic inheritance</topic><topic>Power, Psychological</topic><topic>Precision Medicine</topic><topic>Prediction</topic><topic>Prediction models</topic><topic>Rheumatoid arthritis</topic><topic>Risk factors</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Statistical models</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gola, Damian</creatorcontrib><creatorcontrib>Konig, Inke R.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gola, Damian</au><au>Konig, Inke R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empowering individual trait prediction using interactions for precision medicine</atitle><jtitle>BMC bioinformatics</jtitle><stitle>BMC BIOINFORMATICS</stitle><addtitle>BMC Bioinformatics</addtitle><date>2021-02-18</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>74</spage><epage>74</epage><pages>74-74</pages><artnum>74</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>BackgroundOne component of precision medicine is to construct prediction models with their predicitve ability as high as possible, e.g. to enable individual risk prediction. In genetic epidemiology, complex diseases like coronary artery disease, rheumatoid arthritis, and type 2 diabetes, have a polygenic basis and a common assumption is that biological and genetic features affect the outcome under consideration via interactions. In the case of omics data, the use of standard approaches such as generalized linear models may be suboptimal and machine learning methods are appealing to make individual predictions. However, most of these algorithms focus mostly on main or marginal effects of the single features in a dataset. On the other hand, the detection of interacting features is an active area of research in the realm of genetic epidemiology. One big class of algorithms to detect interacting features is based on the multifactor dimensionality reduction (MDR). Here, we further develop the model-based MDR (MB-MDR), a powerful extension of the original MDR algorithm, to enable interaction empowered individual prediction.ResultsUsing a comprehensive simulation study we show that our new algorithm (median AUC: 0.66) can use information hidden in interactions and outperforms two other state-of-the-art algorithms, namely the Random Forest (median AUC: 0.54) and Elastic Net (median AUC: 0.50), if interactions are present in a scenario of two pairs of two features having small effects. The performance of these algorithms is comparable if no interactions are present. Further, we show that our new algorithm is applicable to real data by comparing the performance of the three algorithms on a dataset of rheumatoid arthritis cases and healthy controls. As our new algorithm is not only applicable to biological/genetic data but to all datasets with discrete features, it may have practical implications in other research fields where interactions between features have to be considered as well, and we made our method available as an R package (https://github.com/imbs-hl/MBMDRClassifieR).ConclusionsThe explicit use of interactions between features can improve the prediction performance and thus should be included in further attempts to move precision medicine forward.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>33602124</pmid><doi>10.1186/s12859-021-04011-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0504-6465</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2021-02, Vol.22 (1), p.74-74, Article 74 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmed_primary_33602124 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals |
subjects | Algorithms Arthritis Autoimmune diseases Biochemical Research Methods Biochemistry & Molecular Biology Biotechnology & Applied Microbiology Cardiovascular disease Classification Coronary artery Coronary artery disease Datasets Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - epidemiology Diabetes Mellitus, Type 2 - genetics Epidemiology Generalized linear models Genetic aspects Heart diseases Humans Interactions Learning algorithms Life Sciences & Biomedicine Machine Learning Mathematical & Computational Biology Medical genetics Methodology Multifactor Dimensionality Reduction Polygenic inheritance Power, Psychological Precision Medicine Prediction Prediction models Rheumatoid arthritis Risk factors Science & Technology Simulation Statistical models Technology application |
title | Empowering individual trait prediction using interactions for precision medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empowering%20individual%20trait%20prediction%20using%20interactions%20for%20precision%20medicine&rft.jtitle=BMC%20bioinformatics&rft.au=Gola,%20Damian&rft.date=2021-02-18&rft.volume=22&rft.issue=1&rft.spage=74&rft.epage=74&rft.pages=74-74&rft.artnum=74&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-021-04011-z&rft_dat=%3Cgale_pubme%3EA653618477%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490912490&rft_id=info:pmid/33602124&rft_galeid=A653618477&rft_doaj_id=oai_doaj_org_article_523d1019b0944ab8a5626b394a255052&rfr_iscdi=true |