A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts

Phenotype-specific omic expression patterns in people with frailty could provide invaluable insight into the underlying multi-systemic pathological processes and targets for intervention. Classical approaches to frailty have not considered the potential for different frailty phenotypes. We character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GeroScience 2021-06, Vol.43 (3), p.1317-1329
Hauptverfasser: Gomez-Cabrero, David, Walter, Stefan, Abugessaisa, Imad, Miñambres-Herraiz, Rebeca, Palomares, Lucia Bernad, Butcher, Lee, Erusalimsky, Jorge D., Garcia-Garcia, Francisco Jose, Carnicero, José, Hardman, Timothy C., Mischak, Harald, Zürbig, Petra, Hackl, Matthias, Grillari, Johannes, Fiorillo, Edoardo, Cucca, Francesco, Cesari, Matteo, Carrie, Isabelle, Colpo, Marco, Bandinelli, Stefania, Feart, Catherine, Peres, Karine, Dartigues, Jean-François, Helmer, Catherine, Viña, José, Olaso, Gloria, García-Palmero, Irene, Martínez, Jorge García, Jansen-Dürr, Pidder, Grune, Tilman, Weber, Daniela, Lippi, Giuseppe, Bonaguri, Chiara, Sinclair, Alan J, Tegner, Jesper, Rodriguez-Mañas, Leocadio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1329
container_issue 3
container_start_page 1317
container_title GeroScience
container_volume 43
creator Gomez-Cabrero, David
Walter, Stefan
Abugessaisa, Imad
Miñambres-Herraiz, Rebeca
Palomares, Lucia Bernad
Butcher, Lee
Erusalimsky, Jorge D.
Garcia-Garcia, Francisco Jose
Carnicero, José
Hardman, Timothy C.
Mischak, Harald
Zürbig, Petra
Hackl, Matthias
Grillari, Johannes
Fiorillo, Edoardo
Cucca, Francesco
Cesari, Matteo
Carrie, Isabelle
Colpo, Marco
Bandinelli, Stefania
Feart, Catherine
Peres, Karine
Dartigues, Jean-François
Helmer, Catherine
Viña, José
Olaso, Gloria
García-Palmero, Irene
Martínez, Jorge García
Jansen-Dürr, Pidder
Grune, Tilman
Weber, Daniela
Lippi, Giuseppe
Bonaguri, Chiara
Sinclair, Alan J
Tegner, Jesper
Rodriguez-Mañas, Leocadio
description Phenotype-specific omic expression patterns in people with frailty could provide invaluable insight into the underlying multi-systemic pathological processes and targets for intervention. Classical approaches to frailty have not considered the potential for different frailty phenotypes. We characterized associations between frailty (with/without disability) and sets of omic factors (genomic, proteomic, and metabolomic) plus markers measured in routine geriatric care. This study was a prevalent case control using stored biospecimens (urine, whole blood, cells, plasma, and serum) from 1522 individuals (identified as robust (R), pre-frail (P), or frail (F)] from the Toledo Study of Healthy Aging (R=178/P=184/F=109), 3 City Bordeaux (111/269/100), Aging Multidisciplinary Investigation (157/79/54) and InCHIANTI (106/98/77) cohorts. The analysis included over 35,000 omic and routine laboratory variables from robust and frail or pre-frail (with/without disability) individuals using a machine learning framework. We identified three protective biomarkers, vitamin D3 (OR: 0.81 [95% CI: 0.68–0.98]), lutein zeaxanthin (OR: 0.82 [95% CI: 0.70–0.97]), and miRNA125b-5p (OR: 0.73, [95% CI: 0.56–0.97]) and one risk biomarker, cardiac troponin T (OR: 1.25 [95% CI: 1.23–1.27]). Excluding individuals with a disability, one protective biomarker was identified, miR125b-5p (OR: 0.85, [95% CI: 0.81–0.88]). Three risks of frailty biomarkers were detected: pro-BNP (OR: 1.47 [95% CI: 1.27–1.7]), cardiac troponin T (OR: 1.29 [95% CI: 1.21–1.38]), and sRAGE (OR: 1.26 [95% CI: 1.01–1.57]). Three key frailty biomarkers demonstrated a statistical association with frailty (oxidative stress, vitamin D, and cardiovascular system) with relationship patterns differing depending on the presence or absence of a disability.
doi_str_mv 10.1007/s11357-021-00334-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33599920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539544712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-6ceb46c6b691a173f9632eaa79caf8f6c85e2c2f63d568a92c1c3359a3abe6233</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEolXpF-CALHFEKf4TOzEHpGpVClIlLnC2HGe8a5q1F9vpaq98chyyLPSCOFgeJb_3PDOvql4SfEUwbt8mQhhva0xJjTFjTY2fVOeUY1nTlrKnp5rws-oyJdfjhhKCW9Y9r84Y41JKis-rH9cohn5KGW212TgPaAQdvfNrZKPewj7Ee5QDcgP47OwBJbf2Ok8RErIhzpAb8-Ed0shDyjAgoxPUJvgcw4hSnoYDcr6wU0R6PfveTDHsQHtkwibEnF5Uz6weE1we74vq64ebL6uP9d3n20-r67vacNrkWhjoG2FELyTRpGVWCkZB61YabTsrTMeBGmoFG7jotKSGmHlOzXQPgjJ2UcnFN-1hN_VqF91Wx4MK2pU6DOr4_d7NRyVQpOGy4VS2Rft-0RZgC4Mpy4h6fGzx6I93G7UOD6ojskQ0G7w-GsTwfSqbUt_KRnyZV1HOJG-altBC0YUyMaQUwZ5eIFjNsasldlU81a_YFS6iV3_3dpL8DrkAbxZgD32wyTjwBk4YxlgQWVpgpcKk0N3_0yuXdXbBr8Lkc5Gy44YL7tcQ_wz5j_5_AkxX3VU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539544712</pqid></control><display><type>article</type><title>A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>SpringerNature Journals</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Gomez-Cabrero, David ; Walter, Stefan ; Abugessaisa, Imad ; Miñambres-Herraiz, Rebeca ; Palomares, Lucia Bernad ; Butcher, Lee ; Erusalimsky, Jorge D. ; Garcia-Garcia, Francisco Jose ; Carnicero, José ; Hardman, Timothy C. ; Mischak, Harald ; Zürbig, Petra ; Hackl, Matthias ; Grillari, Johannes ; Fiorillo, Edoardo ; Cucca, Francesco ; Cesari, Matteo ; Carrie, Isabelle ; Colpo, Marco ; Bandinelli, Stefania ; Feart, Catherine ; Peres, Karine ; Dartigues, Jean-François ; Helmer, Catherine ; Viña, José ; Olaso, Gloria ; García-Palmero, Irene ; Martínez, Jorge García ; Jansen-Dürr, Pidder ; Grune, Tilman ; Weber, Daniela ; Lippi, Giuseppe ; Bonaguri, Chiara ; Sinclair, Alan J ; Tegner, Jesper ; Rodriguez-Mañas, Leocadio</creator><creatorcontrib>Gomez-Cabrero, David ; Walter, Stefan ; Abugessaisa, Imad ; Miñambres-Herraiz, Rebeca ; Palomares, Lucia Bernad ; Butcher, Lee ; Erusalimsky, Jorge D. ; Garcia-Garcia, Francisco Jose ; Carnicero, José ; Hardman, Timothy C. ; Mischak, Harald ; Zürbig, Petra ; Hackl, Matthias ; Grillari, Johannes ; Fiorillo, Edoardo ; Cucca, Francesco ; Cesari, Matteo ; Carrie, Isabelle ; Colpo, Marco ; Bandinelli, Stefania ; Feart, Catherine ; Peres, Karine ; Dartigues, Jean-François ; Helmer, Catherine ; Viña, José ; Olaso, Gloria ; García-Palmero, Irene ; Martínez, Jorge García ; Jansen-Dürr, Pidder ; Grune, Tilman ; Weber, Daniela ; Lippi, Giuseppe ; Bonaguri, Chiara ; Sinclair, Alan J ; Tegner, Jesper ; Rodriguez-Mañas, Leocadio ; FRAILOMIC initiative ; on behalf of the FRAILOMIC initiative</creatorcontrib><description>Phenotype-specific omic expression patterns in people with frailty could provide invaluable insight into the underlying multi-systemic pathological processes and targets for intervention. Classical approaches to frailty have not considered the potential for different frailty phenotypes. We characterized associations between frailty (with/without disability) and sets of omic factors (genomic, proteomic, and metabolomic) plus markers measured in routine geriatric care. This study was a prevalent case control using stored biospecimens (urine, whole blood, cells, plasma, and serum) from 1522 individuals (identified as robust (R), pre-frail (P), or frail (F)] from the Toledo Study of Healthy Aging (R=178/P=184/F=109), 3 City Bordeaux (111/269/100), Aging Multidisciplinary Investigation (157/79/54) and InCHIANTI (106/98/77) cohorts. The analysis included over 35,000 omic and routine laboratory variables from robust and frail or pre-frail (with/without disability) individuals using a machine learning framework. We identified three protective biomarkers, vitamin D3 (OR: 0.81 [95% CI: 0.68–0.98]), lutein zeaxanthin (OR: 0.82 [95% CI: 0.70–0.97]), and miRNA125b-5p (OR: 0.73, [95% CI: 0.56–0.97]) and one risk biomarker, cardiac troponin T (OR: 1.25 [95% CI: 1.23–1.27]). Excluding individuals with a disability, one protective biomarker was identified, miR125b-5p (OR: 0.85, [95% CI: 0.81–0.88]). Three risks of frailty biomarkers were detected: pro-BNP (OR: 1.47 [95% CI: 1.27–1.7]), cardiac troponin T (OR: 1.29 [95% CI: 1.21–1.38]), and sRAGE (OR: 1.26 [95% CI: 1.01–1.57]). Three key frailty biomarkers demonstrated a statistical association with frailty (oxidative stress, vitamin D, and cardiovascular system) with relationship patterns differing depending on the presence or absence of a disability.</description><identifier>ISSN: 2509-2715</identifier><identifier>ISSN: 2509-2723</identifier><identifier>EISSN: 2509-2723</identifier><identifier>DOI: 10.1007/s11357-021-00334-0</identifier><identifier>PMID: 33599920</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Advanced glycosylation end products ; Aging ; Biomarkers ; Biomedical and Life Sciences ; Calcium-binding protein ; Cardiovascular system ; Cell Biology ; Frailty ; Geriatrics &amp; Gerontology ; Heart ; Learning algorithms ; Life Sciences ; Life Sciences &amp; Biomedicine ; Machine learning ; Medicin och hälsovetenskap ; Metabolomics ; Molecular Medicine ; Original ; Original Article ; Oxidative stress ; Phenotypes ; Proteomics ; Science &amp; Technology ; Troponin ; Troponin T ; Vitamin D ; Vitamin D3 ; Zeaxanthin</subject><ispartof>GeroScience, 2021-06, Vol.43 (3), p.1317-1329</ispartof><rights>American Aging Association 2021</rights><rights>American Aging Association 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>35</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000619395300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c524t-6ceb46c6b691a173f9632eaa79caf8f6c85e2c2f63d568a92c1c3359a3abe6233</citedby><cites>FETCH-LOGICAL-c524t-6ceb46c6b691a173f9632eaa79caf8f6c85e2c2f63d568a92c1c3359a3abe6233</cites><orcidid>0000-0002-4253-5789 ; 0000-0002-0348-3664 ; 0000-0001-6906-6268 ; 0000-0002-2054-6233 ; 0000-0003-3465-2173 ; 0000-0003-3690-6069 ; 0000-0002-8690-4988 ; 0000-0001-7458-801X ; 0000-0002-7414-1995 ; 0000-0002-1417-9019 ; 0000-0002-1527-7315 ; 0000-0001-5474-6332 ; 0000-0001-9709-0089 ; 0000-0001-9523-9054 ; 0000-0003-0323-0306 ; 0000-0002-6551-1333 ; 0000-0003-4186-3788 ; 0000-0002-9568-5588 ; 0000-0002-4136-7293 ; 0000-0002-6010-7550 ; 0000-0003-4839-6799 ; 0000-0002-6491-0850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190217/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190217/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,554,729,782,786,887,27933,27934,39266,39267,41497,42566,51328,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33599920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145945297$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Cabrero, David</creatorcontrib><creatorcontrib>Walter, Stefan</creatorcontrib><creatorcontrib>Abugessaisa, Imad</creatorcontrib><creatorcontrib>Miñambres-Herraiz, Rebeca</creatorcontrib><creatorcontrib>Palomares, Lucia Bernad</creatorcontrib><creatorcontrib>Butcher, Lee</creatorcontrib><creatorcontrib>Erusalimsky, Jorge D.</creatorcontrib><creatorcontrib>Garcia-Garcia, Francisco Jose</creatorcontrib><creatorcontrib>Carnicero, José</creatorcontrib><creatorcontrib>Hardman, Timothy C.</creatorcontrib><creatorcontrib>Mischak, Harald</creatorcontrib><creatorcontrib>Zürbig, Petra</creatorcontrib><creatorcontrib>Hackl, Matthias</creatorcontrib><creatorcontrib>Grillari, Johannes</creatorcontrib><creatorcontrib>Fiorillo, Edoardo</creatorcontrib><creatorcontrib>Cucca, Francesco</creatorcontrib><creatorcontrib>Cesari, Matteo</creatorcontrib><creatorcontrib>Carrie, Isabelle</creatorcontrib><creatorcontrib>Colpo, Marco</creatorcontrib><creatorcontrib>Bandinelli, Stefania</creatorcontrib><creatorcontrib>Feart, Catherine</creatorcontrib><creatorcontrib>Peres, Karine</creatorcontrib><creatorcontrib>Dartigues, Jean-François</creatorcontrib><creatorcontrib>Helmer, Catherine</creatorcontrib><creatorcontrib>Viña, José</creatorcontrib><creatorcontrib>Olaso, Gloria</creatorcontrib><creatorcontrib>García-Palmero, Irene</creatorcontrib><creatorcontrib>Martínez, Jorge García</creatorcontrib><creatorcontrib>Jansen-Dürr, Pidder</creatorcontrib><creatorcontrib>Grune, Tilman</creatorcontrib><creatorcontrib>Weber, Daniela</creatorcontrib><creatorcontrib>Lippi, Giuseppe</creatorcontrib><creatorcontrib>Bonaguri, Chiara</creatorcontrib><creatorcontrib>Sinclair, Alan J</creatorcontrib><creatorcontrib>Tegner, Jesper</creatorcontrib><creatorcontrib>Rodriguez-Mañas, Leocadio</creatorcontrib><creatorcontrib>FRAILOMIC initiative</creatorcontrib><creatorcontrib>on behalf of the FRAILOMIC initiative</creatorcontrib><title>A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts</title><title>GeroScience</title><addtitle>GeroScience</addtitle><addtitle>GEROSCIENCE</addtitle><addtitle>Geroscience</addtitle><description>Phenotype-specific omic expression patterns in people with frailty could provide invaluable insight into the underlying multi-systemic pathological processes and targets for intervention. Classical approaches to frailty have not considered the potential for different frailty phenotypes. We characterized associations between frailty (with/without disability) and sets of omic factors (genomic, proteomic, and metabolomic) plus markers measured in routine geriatric care. This study was a prevalent case control using stored biospecimens (urine, whole blood, cells, plasma, and serum) from 1522 individuals (identified as robust (R), pre-frail (P), or frail (F)] from the Toledo Study of Healthy Aging (R=178/P=184/F=109), 3 City Bordeaux (111/269/100), Aging Multidisciplinary Investigation (157/79/54) and InCHIANTI (106/98/77) cohorts. The analysis included over 35,000 omic and routine laboratory variables from robust and frail or pre-frail (with/without disability) individuals using a machine learning framework. We identified three protective biomarkers, vitamin D3 (OR: 0.81 [95% CI: 0.68–0.98]), lutein zeaxanthin (OR: 0.82 [95% CI: 0.70–0.97]), and miRNA125b-5p (OR: 0.73, [95% CI: 0.56–0.97]) and one risk biomarker, cardiac troponin T (OR: 1.25 [95% CI: 1.23–1.27]). Excluding individuals with a disability, one protective biomarker was identified, miR125b-5p (OR: 0.85, [95% CI: 0.81–0.88]). Three risks of frailty biomarkers were detected: pro-BNP (OR: 1.47 [95% CI: 1.27–1.7]), cardiac troponin T (OR: 1.29 [95% CI: 1.21–1.38]), and sRAGE (OR: 1.26 [95% CI: 1.01–1.57]). Three key frailty biomarkers demonstrated a statistical association with frailty (oxidative stress, vitamin D, and cardiovascular system) with relationship patterns differing depending on the presence or absence of a disability.</description><subject>Advanced glycosylation end products</subject><subject>Aging</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium-binding protein</subject><subject>Cardiovascular system</subject><subject>Cell Biology</subject><subject>Frailty</subject><subject>Geriatrics &amp; Gerontology</subject><subject>Heart</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Machine learning</subject><subject>Medicin och hälsovetenskap</subject><subject>Metabolomics</subject><subject>Molecular Medicine</subject><subject>Original</subject><subject>Original Article</subject><subject>Oxidative stress</subject><subject>Phenotypes</subject><subject>Proteomics</subject><subject>Science &amp; Technology</subject><subject>Troponin</subject><subject>Troponin T</subject><subject>Vitamin D</subject><subject>Vitamin D3</subject><subject>Zeaxanthin</subject><issn>2509-2715</issn><issn>2509-2723</issn><issn>2509-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>D8T</sourceid><recordid>eNqNkU9v1DAQxSMEolXpF-CALHFEKf4TOzEHpGpVClIlLnC2HGe8a5q1F9vpaq98chyyLPSCOFgeJb_3PDOvql4SfEUwbt8mQhhva0xJjTFjTY2fVOeUY1nTlrKnp5rws-oyJdfjhhKCW9Y9r84Y41JKis-rH9cohn5KGW212TgPaAQdvfNrZKPewj7Ee5QDcgP47OwBJbf2Ok8RErIhzpAb8-Ed0shDyjAgoxPUJvgcw4hSnoYDcr6wU0R6PfveTDHsQHtkwibEnF5Uz6weE1we74vq64ebL6uP9d3n20-r67vacNrkWhjoG2FELyTRpGVWCkZB61YabTsrTMeBGmoFG7jotKSGmHlOzXQPgjJ2UcnFN-1hN_VqF91Wx4MK2pU6DOr4_d7NRyVQpOGy4VS2Rft-0RZgC4Mpy4h6fGzx6I93G7UOD6ojskQ0G7w-GsTwfSqbUt_KRnyZV1HOJG-altBC0YUyMaQUwZ5eIFjNsasldlU81a_YFS6iV3_3dpL8DrkAbxZgD32wyTjwBk4YxlgQWVpgpcKk0N3_0yuXdXbBr8Lkc5Gy44YL7tcQ_wz5j_5_AkxX3VU</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gomez-Cabrero, David</creator><creator>Walter, Stefan</creator><creator>Abugessaisa, Imad</creator><creator>Miñambres-Herraiz, Rebeca</creator><creator>Palomares, Lucia Bernad</creator><creator>Butcher, Lee</creator><creator>Erusalimsky, Jorge D.</creator><creator>Garcia-Garcia, Francisco Jose</creator><creator>Carnicero, José</creator><creator>Hardman, Timothy C.</creator><creator>Mischak, Harald</creator><creator>Zürbig, Petra</creator><creator>Hackl, Matthias</creator><creator>Grillari, Johannes</creator><creator>Fiorillo, Edoardo</creator><creator>Cucca, Francesco</creator><creator>Cesari, Matteo</creator><creator>Carrie, Isabelle</creator><creator>Colpo, Marco</creator><creator>Bandinelli, Stefania</creator><creator>Feart, Catherine</creator><creator>Peres, Karine</creator><creator>Dartigues, Jean-François</creator><creator>Helmer, Catherine</creator><creator>Viña, José</creator><creator>Olaso, Gloria</creator><creator>García-Palmero, Irene</creator><creator>Martínez, Jorge García</creator><creator>Jansen-Dürr, Pidder</creator><creator>Grune, Tilman</creator><creator>Weber, Daniela</creator><creator>Lippi, Giuseppe</creator><creator>Bonaguri, Chiara</creator><creator>Sinclair, Alan J</creator><creator>Tegner, Jesper</creator><creator>Rodriguez-Mañas, Leocadio</creator><general>Springer International Publishing</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-4253-5789</orcidid><orcidid>https://orcid.org/0000-0002-0348-3664</orcidid><orcidid>https://orcid.org/0000-0001-6906-6268</orcidid><orcidid>https://orcid.org/0000-0002-2054-6233</orcidid><orcidid>https://orcid.org/0000-0003-3465-2173</orcidid><orcidid>https://orcid.org/0000-0003-3690-6069</orcidid><orcidid>https://orcid.org/0000-0002-8690-4988</orcidid><orcidid>https://orcid.org/0000-0001-7458-801X</orcidid><orcidid>https://orcid.org/0000-0002-7414-1995</orcidid><orcidid>https://orcid.org/0000-0002-1417-9019</orcidid><orcidid>https://orcid.org/0000-0002-1527-7315</orcidid><orcidid>https://orcid.org/0000-0001-5474-6332</orcidid><orcidid>https://orcid.org/0000-0001-9709-0089</orcidid><orcidid>https://orcid.org/0000-0001-9523-9054</orcidid><orcidid>https://orcid.org/0000-0003-0323-0306</orcidid><orcidid>https://orcid.org/0000-0002-6551-1333</orcidid><orcidid>https://orcid.org/0000-0003-4186-3788</orcidid><orcidid>https://orcid.org/0000-0002-9568-5588</orcidid><orcidid>https://orcid.org/0000-0002-4136-7293</orcidid><orcidid>https://orcid.org/0000-0002-6010-7550</orcidid><orcidid>https://orcid.org/0000-0003-4839-6799</orcidid><orcidid>https://orcid.org/0000-0002-6491-0850</orcidid></search><sort><creationdate>20210601</creationdate><title>A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts</title><author>Gomez-Cabrero, David ; Walter, Stefan ; Abugessaisa, Imad ; Miñambres-Herraiz, Rebeca ; Palomares, Lucia Bernad ; Butcher, Lee ; Erusalimsky, Jorge D. ; Garcia-Garcia, Francisco Jose ; Carnicero, José ; Hardman, Timothy C. ; Mischak, Harald ; Zürbig, Petra ; Hackl, Matthias ; Grillari, Johannes ; Fiorillo, Edoardo ; Cucca, Francesco ; Cesari, Matteo ; Carrie, Isabelle ; Colpo, Marco ; Bandinelli, Stefania ; Feart, Catherine ; Peres, Karine ; Dartigues, Jean-François ; Helmer, Catherine ; Viña, José ; Olaso, Gloria ; García-Palmero, Irene ; Martínez, Jorge García ; Jansen-Dürr, Pidder ; Grune, Tilman ; Weber, Daniela ; Lippi, Giuseppe ; Bonaguri, Chiara ; Sinclair, Alan J ; Tegner, Jesper ; Rodriguez-Mañas, Leocadio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-6ceb46c6b691a173f9632eaa79caf8f6c85e2c2f63d568a92c1c3359a3abe6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced glycosylation end products</topic><topic>Aging</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium-binding protein</topic><topic>Cardiovascular system</topic><topic>Cell Biology</topic><topic>Frailty</topic><topic>Geriatrics &amp; Gerontology</topic><topic>Heart</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Machine learning</topic><topic>Medicin och hälsovetenskap</topic><topic>Metabolomics</topic><topic>Molecular Medicine</topic><topic>Original</topic><topic>Original Article</topic><topic>Oxidative stress</topic><topic>Phenotypes</topic><topic>Proteomics</topic><topic>Science &amp; Technology</topic><topic>Troponin</topic><topic>Troponin T</topic><topic>Vitamin D</topic><topic>Vitamin D3</topic><topic>Zeaxanthin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Cabrero, David</creatorcontrib><creatorcontrib>Walter, Stefan</creatorcontrib><creatorcontrib>Abugessaisa, Imad</creatorcontrib><creatorcontrib>Miñambres-Herraiz, Rebeca</creatorcontrib><creatorcontrib>Palomares, Lucia Bernad</creatorcontrib><creatorcontrib>Butcher, Lee</creatorcontrib><creatorcontrib>Erusalimsky, Jorge D.</creatorcontrib><creatorcontrib>Garcia-Garcia, Francisco Jose</creatorcontrib><creatorcontrib>Carnicero, José</creatorcontrib><creatorcontrib>Hardman, Timothy C.</creatorcontrib><creatorcontrib>Mischak, Harald</creatorcontrib><creatorcontrib>Zürbig, Petra</creatorcontrib><creatorcontrib>Hackl, Matthias</creatorcontrib><creatorcontrib>Grillari, Johannes</creatorcontrib><creatorcontrib>Fiorillo, Edoardo</creatorcontrib><creatorcontrib>Cucca, Francesco</creatorcontrib><creatorcontrib>Cesari, Matteo</creatorcontrib><creatorcontrib>Carrie, Isabelle</creatorcontrib><creatorcontrib>Colpo, Marco</creatorcontrib><creatorcontrib>Bandinelli, Stefania</creatorcontrib><creatorcontrib>Feart, Catherine</creatorcontrib><creatorcontrib>Peres, Karine</creatorcontrib><creatorcontrib>Dartigues, Jean-François</creatorcontrib><creatorcontrib>Helmer, Catherine</creatorcontrib><creatorcontrib>Viña, José</creatorcontrib><creatorcontrib>Olaso, Gloria</creatorcontrib><creatorcontrib>García-Palmero, Irene</creatorcontrib><creatorcontrib>Martínez, Jorge García</creatorcontrib><creatorcontrib>Jansen-Dürr, Pidder</creatorcontrib><creatorcontrib>Grune, Tilman</creatorcontrib><creatorcontrib>Weber, Daniela</creatorcontrib><creatorcontrib>Lippi, Giuseppe</creatorcontrib><creatorcontrib>Bonaguri, Chiara</creatorcontrib><creatorcontrib>Sinclair, Alan J</creatorcontrib><creatorcontrib>Tegner, Jesper</creatorcontrib><creatorcontrib>Rodriguez-Mañas, Leocadio</creatorcontrib><creatorcontrib>FRAILOMIC initiative</creatorcontrib><creatorcontrib>on behalf of the FRAILOMIC initiative</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>GeroScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Cabrero, David</au><au>Walter, Stefan</au><au>Abugessaisa, Imad</au><au>Miñambres-Herraiz, Rebeca</au><au>Palomares, Lucia Bernad</au><au>Butcher, Lee</au><au>Erusalimsky, Jorge D.</au><au>Garcia-Garcia, Francisco Jose</au><au>Carnicero, José</au><au>Hardman, Timothy C.</au><au>Mischak, Harald</au><au>Zürbig, Petra</au><au>Hackl, Matthias</au><au>Grillari, Johannes</au><au>Fiorillo, Edoardo</au><au>Cucca, Francesco</au><au>Cesari, Matteo</au><au>Carrie, Isabelle</au><au>Colpo, Marco</au><au>Bandinelli, Stefania</au><au>Feart, Catherine</au><au>Peres, Karine</au><au>Dartigues, Jean-François</au><au>Helmer, Catherine</au><au>Viña, José</au><au>Olaso, Gloria</au><au>García-Palmero, Irene</au><au>Martínez, Jorge García</au><au>Jansen-Dürr, Pidder</au><au>Grune, Tilman</au><au>Weber, Daniela</au><au>Lippi, Giuseppe</au><au>Bonaguri, Chiara</au><au>Sinclair, Alan J</au><au>Tegner, Jesper</au><au>Rodriguez-Mañas, Leocadio</au><aucorp>FRAILOMIC initiative</aucorp><aucorp>on behalf of the FRAILOMIC initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts</atitle><jtitle>GeroScience</jtitle><stitle>GeroScience</stitle><stitle>GEROSCIENCE</stitle><addtitle>Geroscience</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>43</volume><issue>3</issue><spage>1317</spage><epage>1329</epage><pages>1317-1329</pages><issn>2509-2715</issn><issn>2509-2723</issn><eissn>2509-2723</eissn><abstract>Phenotype-specific omic expression patterns in people with frailty could provide invaluable insight into the underlying multi-systemic pathological processes and targets for intervention. Classical approaches to frailty have not considered the potential for different frailty phenotypes. We characterized associations between frailty (with/without disability) and sets of omic factors (genomic, proteomic, and metabolomic) plus markers measured in routine geriatric care. This study was a prevalent case control using stored biospecimens (urine, whole blood, cells, plasma, and serum) from 1522 individuals (identified as robust (R), pre-frail (P), or frail (F)] from the Toledo Study of Healthy Aging (R=178/P=184/F=109), 3 City Bordeaux (111/269/100), Aging Multidisciplinary Investigation (157/79/54) and InCHIANTI (106/98/77) cohorts. The analysis included over 35,000 omic and routine laboratory variables from robust and frail or pre-frail (with/without disability) individuals using a machine learning framework. We identified three protective biomarkers, vitamin D3 (OR: 0.81 [95% CI: 0.68–0.98]), lutein zeaxanthin (OR: 0.82 [95% CI: 0.70–0.97]), and miRNA125b-5p (OR: 0.73, [95% CI: 0.56–0.97]) and one risk biomarker, cardiac troponin T (OR: 1.25 [95% CI: 1.23–1.27]). Excluding individuals with a disability, one protective biomarker was identified, miR125b-5p (OR: 0.85, [95% CI: 0.81–0.88]). Three risks of frailty biomarkers were detected: pro-BNP (OR: 1.47 [95% CI: 1.27–1.7]), cardiac troponin T (OR: 1.29 [95% CI: 1.21–1.38]), and sRAGE (OR: 1.26 [95% CI: 1.01–1.57]). Three key frailty biomarkers demonstrated a statistical association with frailty (oxidative stress, vitamin D, and cardiovascular system) with relationship patterns differing depending on the presence or absence of a disability.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33599920</pmid><doi>10.1007/s11357-021-00334-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4253-5789</orcidid><orcidid>https://orcid.org/0000-0002-0348-3664</orcidid><orcidid>https://orcid.org/0000-0001-6906-6268</orcidid><orcidid>https://orcid.org/0000-0002-2054-6233</orcidid><orcidid>https://orcid.org/0000-0003-3465-2173</orcidid><orcidid>https://orcid.org/0000-0003-3690-6069</orcidid><orcidid>https://orcid.org/0000-0002-8690-4988</orcidid><orcidid>https://orcid.org/0000-0001-7458-801X</orcidid><orcidid>https://orcid.org/0000-0002-7414-1995</orcidid><orcidid>https://orcid.org/0000-0002-1417-9019</orcidid><orcidid>https://orcid.org/0000-0002-1527-7315</orcidid><orcidid>https://orcid.org/0000-0001-5474-6332</orcidid><orcidid>https://orcid.org/0000-0001-9709-0089</orcidid><orcidid>https://orcid.org/0000-0001-9523-9054</orcidid><orcidid>https://orcid.org/0000-0003-0323-0306</orcidid><orcidid>https://orcid.org/0000-0002-6551-1333</orcidid><orcidid>https://orcid.org/0000-0003-4186-3788</orcidid><orcidid>https://orcid.org/0000-0002-9568-5588</orcidid><orcidid>https://orcid.org/0000-0002-4136-7293</orcidid><orcidid>https://orcid.org/0000-0002-6010-7550</orcidid><orcidid>https://orcid.org/0000-0003-4839-6799</orcidid><orcidid>https://orcid.org/0000-0002-6491-0850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2509-2715
ispartof GeroScience, 2021-06, Vol.43 (3), p.1317-1329
issn 2509-2715
2509-2723
2509-2723
language eng
recordid cdi_pubmed_primary_33599920
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; SpringerNature Journals; PubMed Central; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection; SWEPUB Freely available online
subjects Advanced glycosylation end products
Aging
Biomarkers
Biomedical and Life Sciences
Calcium-binding protein
Cardiovascular system
Cell Biology
Frailty
Geriatrics & Gerontology
Heart
Learning algorithms
Life Sciences
Life Sciences & Biomedicine
Machine learning
Medicin och hälsovetenskap
Metabolomics
Molecular Medicine
Original
Original Article
Oxidative stress
Phenotypes
Proteomics
Science & Technology
Troponin
Troponin T
Vitamin D
Vitamin D3
Zeaxanthin
title A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging European cohorts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20machine%20learning%20framework%20to%20identify%20signatures%20for%20frailty:%20a%20nested%20case-control%20study%20in%20four%20aging%20European%20cohorts&rft.jtitle=GeroScience&rft.au=Gomez-Cabrero,%20David&rft.aucorp=FRAILOMIC%20initiative&rft.date=2021-06-01&rft.volume=43&rft.issue=3&rft.spage=1317&rft.epage=1329&rft.pages=1317-1329&rft.issn=2509-2715&rft.eissn=2509-2723&rft_id=info:doi/10.1007/s11357-021-00334-0&rft_dat=%3Cproquest_pubme%3E2539544712%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539544712&rft_id=info:pmid/33599920&rfr_iscdi=true